convexification and global optimization
play

CONVEXIFICATION AND GLOBAL OPTIMIZATION Nick Sahinidis University - PowerPoint PPT Presentation

CONVEXIFICATION AND GLOBAL OPTIMIZATION Nick Sahinidis University of Illinois at Urbana-Champaign Chemical and Biomolecular Engineering MIXED-INTEGER NONLINEAR PROGRAMMING (P) min f ( x, y ) Objective Function s.t. g ( x, y ) 0


  1. CONVEXIFICATION AND GLOBAL OPTIMIZATION Nick Sahinidis University of Illinois at Urbana-Champaign Chemical and Biomolecular Engineering

  2. MIXED-INTEGER NONLINEAR PROGRAMMING (P) min f ( x, y ) Objective Function s.t. g ( x, y ) ≤ 0 Constraints x ∈ R n Continuous Variables y ∈ Z p Integrality Restrictions Challenges: Multimodal Objective • Objective f ( x ) Integrality • Feasible Space Nonconvex Constraints • f ( x ) Convex Objective Projected Objective Nonconvex Feasible Space

  3. MINLP ALGORITHMS • Branch-and-Bound • Our approach – Bound problem over successively – Branch-and-Reduce refined partitions » Ryoo and Sahinidis, 1995, 1996 » Falk and Soland, 1969 » Shectman and Sahinidis, 1998 » McCormick, 1976 – Constraint Propagation & Duality- Based Reduction • Convexification » Ryoo and Sahinidis, 1995, 1996 – Outer-approximate with increasingly tighter convex programs » Tawarmalani and Sahinidis, 2002 – Tuy, 1964 – Convexification – Sherali and Adams, 1994 » Tawarmalani and Sahinidis, • Decomposition 2001, 2002 – Project out some variables by • Tawarmalani, M. and N. V. solving subproblem Sahinidis, Convexification and » Duran and Grossmann, 1986 Global Optimization in » Visweswaran and Floudas, 1990 Continuous and Mixed-Integer Nonlinear Programming, Kluwer Academic Publishers, Nov. 2002.

  4. BRANCH-AND-BOUND Objective Objective P P U R R L L Variable Variable a. Lower Bounding b. Upper Bounding Objective P R R2 U L R1 R R1 R2 Fathom Subdivide Variable c. Domain Subdivision d. Search Tree

  5. FACTORABLE FUNCTIONS (McCormick, 1976) Definition: Factorable functions are recursive compositions of sums and products of functions of single variables. � exp( xy + z ln w ) z 3 Example: f ( x, y, z, w ) = x 1 = xy f x 2 = ln( w ) � �� � x 5 x 3 = zx 2 � �� � x 6 x 3 ���� � �� � x 4 = x 1 + x 3 � � 0 . 5 z 3 exp( xy + z ln w ) ���� ���� x 5 = exp( x 4 ) x 2 x 1 � �� � x 6 = z 3 x 4 � �� � x 7 = x 5 x 6 x 7 f = √ x 7

  6. RATIO: THE FACTORABLE RELAXATION z ≥ x/y y L ≤ y ≤ y U x / y y U x L ≤ x ≤ x U x L x y y L x U zy ≥ x z ≥ x/y cross-multiplying y L ≤ y ≤ y U x L ≤ x ≤ x U x L /y U ≤ z ≤ x U /y L y L ≤ y ≤ y U x L ≤ x ≤ x U Relaxing z ≥ ( xy U − yx L + x L y U ) /y U 2 zy − ( z − x L /y U )( y − y U ) ≥ x Simplifying z ≥ ( xy L − yx U + x U y L ) /y L 2 zy − ( z − x U /y L )( y − y L ) ≥ x y L ≤ y ≤ y U y L ≤ y ≤ y U x L ≤ x ≤ x U x L ≤ x ≤ x U

  7. TIGHT RELAXATIONS f ( x ) f ( x ) Concave Concave envelope over-estimator Convex envelope Convex under-estimator x x f ( x ) x Convex/concave envelopes often finitely generated

  8. CONVEX EXTENSIONS OF L.S.C. FUNCTIONS Definition: A function f ( x ) is a convex extension of g ( x ) : C �→ R restricted to X ⊆ C if • f ( x ) is convex on conv ( X ), • f ( x ) = g ( x ) for all x ∈ X . Example: The Univariate Case • f(x) is a convex extension of g(x) restricted g(x) l m to { l, n, o, q } q f(x) • Convex extension of g(x) restricted to { l, m, n p n, o, p, q } cannot be constructed o x (0,0)

  9. THE GENERATING SET OF A FUNCTION Definition: The generating set of the epigraph of a function g ( x ) over a compact convex set C is defined as � � � ��� � � G epi C ( g ) = x � ( x, y ) ∈ vert epi conv g ( x ) , � where vert( · ) is the set of extreme points of ( · ). Examples: g ( x ) = − x 2 g ( x ) = xy x − x 2 xy x Convex Envelope y G epi G epi [0 , 6] ( g ) = { 0 } ∪ { 6 } [1 , 4] 2 ( g ) = { 1 , 1 } ∪ { 1 , 4 } ∪ { 4 , 1 } ∪ { 4 , 4 }

  10. TWO-STEP CONVEX ENVELOPE CONSTRUCTION 1. Identify generating set • Key result: A point in set X is not in the generating set if it is not in the generating set over a neighborhood of X that contains it 2. Use disjunctive programming techniques to construct epigraph over the generating set • Rockafellar (1970) • Balas (1974)

  11. IDENTIFYING THE GENERATING SET Characterization: x 0 �∈ G epi C ( g ) if and only if there exists X ⊆ C and x 0 �∈ G epi X ( g ). Example I: X is linear joining ( x L , y 0 ) and ( x U , y 0 ) � � � � x ∈ { x L , x U } G epi ( x/y ) = ( x, y ) x y x y Example II: X is ǫ neighborhood of ( x 0 , y 0 ) � � � � x ∈ { x L , x U } G epi ( x 2 y 2 ) = ( x, y ) ∪ x 2 y 2 � � � � y ∈ { y L , y U } ( x, y ) U y x L x y L x U y

  12. CONVEX ENVELOPE OF x/y Second Order Cone Representation: √ � 2(1 − λ ) � �� x L � � � ≤ z p + y p � � z p − y p � √ � �� � x U 2 λ � � � ≤ z − z p + y − y p � � z − z p − y + y p � y p ≥ y L (1 − λ ) , y p ≥ y − y U λ y p ≤ y U (1 − λ ) , y p ≤ y − y L λ x = (1 − λ ) x L + λx U z p , u, v ≥ 0 , z c − z p ≥ 0 0 ≤ λ ≤ 1 Comparison of Tightness: 14 . 2 4 40 0 . 5 0 y 0 x 0 . 1 3 . 4 0 . 5 x 0 4 0 . 1 y 0 . 5 0 . 10 . 1 x 4 0 . 1 y 0 . 1 Ratio: x/y x/y − Envelope x/y − Factorable Maximum Gap: Envelope and Factorable Relaxation: � � x U , y L + y L ( y U − y L )( x U y U − x L y L ) Point: x U y U 2 − x L y L 2 x U ( y U − y L ) 2 ( x U y U − x L y L ) 2 Gap: y L y U (2 x U y U − x L y L − x U y L )( x U y U 2 − x L y L 2 )

  13. ENVELOPES OF MULTILINEAR FUNCTIONS • Multilinear function over a box p ∑ ∏ t = − ∞ < ≤ ≤ < +∞ = M ( x ,..., x ) a x , L x U , i 1 , , n K 1 n t i i i i = t i 1 • Generating set  ∏  n   vert [ L , U ]  i i   = i 1 • Polyhedral convex encloser follows trivially from polyhedral representation theorems

  14. FURTHER APPLICATIONS M ( x 1 , x 2 , · · · x n ) / ( y a 1 1 y a 2 2 . . . y a m m ) where M ( · ) is a multilinear expression y 1 , . . . , y m � = 0 a 1 , . . . , a m ≥ 0 Example: ( x 1 x 2 + x 3 x 2 ) / ( y 1 y 2 y 3 ) n k � � a ij y j f ( x ) i i =1 j = − p where f is concave a ij ≥ 0 for i = 1 , . . . , n ; j = − p, . . . , k y i > 0 Example: x/y + 3 x + 4 xy + 2 xy 2

  15. PRODUCT DISAGGREGATION Consider the function: n n ∑ ∑ φ = + + + ( x ; y , , y ) a a y x b x b y K 1 n 0 k k 0 k k = = k 1 k 1 Let n Π = × L U L U H [ x , x ] [ y , y ] k k = k 1 Then n ∑ convenv φ = + + + a a y x b H 0 k k 0 = k 1 n ∑ convenv ( b y x ) L U L U k k × [ y , y ] [ x , x ] k k = k 1 Disaggregated formulations are tighter

  16. POOLING: p FORMULATION y 11 ≤ 3% S ≤ 2 . 5% S x 11 Blend X $6 y 21 $9 Pool ≤ 1% S X ≤ 100 x 21 $16 y 12 ≤ 2% S ≤ 1 . 5% S x 12 Blend Y $10 y 22 $15 Y ≤ 200 X -revenue Y -revenue cost � �� � � �� � � �� � min 6 x 11 + 16 x 21 + 10 x 12 − 9( y 11 + y 21 ) − 15( y 12 + y 22 ) q = 3 x 11 + x 21 s.t. Sulfur Mass Balance y 11 + y 12 x 11 + x 21 = y 11 + y 12 Mass balance x 12 = y 21 + y 22 qy 11 + 2 y 21 ≤ 2 . 5 y 11 + y 21 Quality Requirements qy 12 + 2 y 22 ≤ 1 . 5 y 12 + y 22 y 11 + y 21 ≤ 100 Demands y 12 + y 22 ≤ 200 Haverly 1978

  17. POOLING: q FORMULATION ≤ 3% S $6 y 11 ≤ 2 . 5% S Blend X y 11 q 11 + y 12 q 11 z 31 $9 Pool X ≤ 100 ≤ 1% S $16 y 11 q 21 + y 12 q 21 y 12 ≤ 2% S ≤ 1 . 5% S Blend Y $10 z 32 $15 Y ≤ 200 cost � �� � min 6 ( y 11 q 11 + y 12 q 11 ) + 16 ( y 11 q 21 + y 12 q 21 ) + 10 ( z 31 + z 32 ) X -revenue Y -revenue � �� � � �� � 9( y 11 + y 21 ) − 15( x 12 + x 22 ) − s.t. q 11 + q 21 = 1 Mass Balance − 0 . 5 z 31 + 3 y 11 q 11 + y 11 q 21 ≤ 2 . 5 y 11 Quality Requirements 0 . 5 z 32 + 3 y 12 q 11 + y 12 q 21 ≤ 1 . 5 y 12 y 11 + z 31 ≤ 100 Demands y 12 + z 32 ≤ 200 Ben-Tal et al. 1994

  18. POOLING: pq FORMULATION ≤ 3% S $6 y 11 ≤ 2 . 5% S Blend X y 11 q 11 + y 12 q 11 z 31 $9 Pool X ≤ 100 ≤ 1% S $16 y 11 q 21 + y 12 q 21 y 12 ≤ 2% S ≤ 1 . 5% S Blend Y $10 z 32 $15 Y ≤ 200 cost � �� � min 6 ( y 11 q 11 + y 12 q 11 ) + 16 ( y 11 q 21 + y 12 q 21 ) + 10 ( z 31 + z 32 ) X -revenue Y -revenue � �� � � �� � 9( y 11 + y 21 ) − 15( x 12 + x 22 ) − s.t. q 11 + q 21 = 1 Mass Balance − 0 . 5 z 31 + 3 y 11 q 11 + y 11 q 21 ≤ 2 . 5 y 11 Quality Requirements 0 . 5 z 32 + 3 y 12 q 11 + y 12 q 21 ≤ 1 . 5 y 12 y 11 + z 31 ≤ 100 Demands y 12 + z 32 ≤ 200 y 11 q 11 + y 11 q 21 = y 11 Convexification y 12 q 11 + y 12 q 21 = y 12 Constraints Proof relies on Convex Extensions

  19. PROOF VIA CONVEX EXTENSIONS ≤ 3% S $6 y 11 ≤ 2 . 5% S Blend X y 11 q 11 + y 12 q 11 z 31 $9 Pool X ≤ 100 ≤ 1% S $16 y 11 q 21 + y 12 q 21 y 12 ≤ 2% S ≤ 1 . 5% S Blend Y $10 z 32 $15 Y ≤ 200 With Convexification Constraints, the convex envelope of I � C ik q il y lj i =1 over I � q il = 1 i =1 q il ∈ [0 , 1] y lj ∈ [ y L lj , y U lj ] is included. In the example, the convex envelopes of 3 q 11 y 11 + q 21 y 11 and 3 q 11 y 12 + q 21 y 12 over q 11 + q 12 = 1 q 11 , q 12 ∈ [0 , 1] y 11 ∈ [0 , 100] , y 12 ∈ [0 , 200] are generated in this way.

  20. OUTER APPROXIMATION Motivation: • Convex NLP solvers are not as robust as LP solvers • Linear programs can be solved efficiently Outer-Approximation: Convex Functions are underestimated by tangent lines φ ( x ) x x U x L

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend