convergence of bender denk algorithm
play

Convergence of Bender/Denk algorithm L 2 -error estimates and rate of - PowerPoint PPT Presentation

Assumptions and framework Approximation Numerical examples Convergence of Bender/Denk algorithm L 2 -error estimates and rate of convergence for Monte Carlo projection Plamen Turkedjiev Tuesday 26th October, 2010 Plamen Turkedijev Humboldt


  1. Assumptions and framework Approximation Numerical examples Convergence of Bender/Denk algorithm L 2 -error estimates and rate of convergence for Monte Carlo projection Plamen Turkedjiev Tuesday 26th October, 2010 Plamen Turkedijev Humboldt Universit¨ at zu Berlin

  2. Assumptions and framework Approximation Numerical examples Approximate the following BSDE using a discretized scheme: − d Y s = f ( s, X s , Y s , Z s )d s − Z s d W s , 0 ≤ t < T Y T (= ξ ) = Φ( X T ) ◮ ( X t ) 0 ≤ t ≤ T diffusion with Lipschitz data ( b, σ ) , t �→ b ( t, 0) , σ ( t, 0) bounded ◮ ( x, y, z ) �→ f ( t, x, y, z ) and x �→ Φ( x ) are Lipschitz continuous, t �→ f ( t, 0 , 0 , 0) bounded Discretization: Time-grid with N points, ∆ k := t k +1 − t k , | π | := max 0 ≤ k ≤ N − 1 ∆ k , ∆ W t k := W k +1 − W k Plamen Turkedijev Humboldt Universit¨ at zu Berlin

  3. Assumptions and framework Projection algorithm Approximation Monte Carlo algorithm Numerical examples Error estimate 1. Select regression basis p ( x ) = ( φ 1 ( x ) , . . . , φ M ( x )) such that t k ) ∈ L 2 and for Euler simulation ( X ( π ) t k ) 0 ≤ k ≤ N , φ i ( X ( π ) p ( X ( π ) t k )[ p ( X ( π ) � t k )] tr � invertible E ∆ W tk p ( X ( π ) √ ∆ k p ( X ( π ) ∈ R M × R M � � Transform v t k := t k ) , t k ) 2. Perform n Picard iterations for regression coefficients Z,t k ) ∈ R M × R M : θ ( n ) ˆ t k = (ˆ θ ( n ) Y,t k , ˆ θ ( n ) 1 Y ( m ) ˆ := ˆ θ ( m ) Y,t j · p ( X ( π ) t j ) , ˆ Z ( m ) θ ( m ) ˆ Z,t j · p ( X ( π ) := √ ∆ k t j ) t j t j N − 1 �� � � ξ ( π ) − θ ( m +1) f ( t j , X ( π ) Y ( m ) Z ( m ) � 2 ˆ � t j , ˆ , ˆ � := arg min E )∆ j − θ · v t k t k t j t j θ j = k 4. Projection estimators: 1 Y ( n ) θ ( n ) Y,t j · p ( X ( π ) Z ( n ) θ ( n ) Z,t j · p ( X ( π ) ˆ := ˆ t j ) , ˆ ˆ := √ ∆ k t j ) t j t j Plamen Turkedijev Humboldt Universit¨ at zu Berlin

  4. Assumptions and framework Projection algorithm Approximation Monte Carlo algorithm Numerical examples Error estimate 1. Select regression basis p ( x ) = ( φ 1 ( x ) , . . . , φ M ( x )) such that for Euler simulation ( X ( π ) t k ) 0 ≤ k ≤ N , φ i ( X ( π ) t k ) ∈ L 2 and p ( X ( π ) t k )[ p ( X ( π ) t k )] tr � � invertible E 2. Generate L independent simulations { ( W ( π,l ) ) 0 ≤ k ≤ N } 1 ≤ l ≤ L t k of ( W t k ) 0 ≤ k ≤ N and Euler simulations { ( X ( π,l ) ) 0 ≤ k ≤ N } 1 ≤ l ≤ L t k ∆ W l p ( X ( π,l ) √ ∆ k p ( X ( π,l ) ∈ R M × R M Transform v l � tk � t k := ) , ) t k t k 3. Perform n Picard iterations for regression coefficients θ ( n,L ) θ ( n,L ) θ ( n,L ) Z,t k ) ∈ R M × R M : ˆ = (ˆ Y,t k , ˆ t k   θ ( m,L ) ˆ � � Y ( m,L,l ) θ ( m,L ) ˆ · p ( X ( π,l ) Z ( m,L,l ) Z,t k · p ( X ( π,l ) ˆ , ˆ := ˆ ρ j ) := ˆ ρ j √ ∆ k ) t j t j t j t j Y,t j   L 1 �� θ ( m +1 ,L ) ˆ � � ξ ( π,l ) − := arg min t k L θ l =1 N − 1 � 2 � � f ( t j , X ( π,l ) , ˆ Y ( m,L,l ) , ˆ Z ( m,L,l ) )∆ j − θ · v l � t j t j t j t k j = k Plamen Turkedijev Humboldt Universit¨ at zu Berlin

  5. Assumptions and framework Projection algorithm Approximation Monte Carlo algorithm Numerical examples Error estimate 4. Monte Carlo estimators:   θ ( n,L ) ˆ � � Y ( n,L ) θ ( n,L ) Y,t k · p ( X ( π ) Z ( n,L ) Z,t k · p ( X ( π ) ˆ ˆ , ˆ := ˆ ρ k t k ) := ˆ ρ k √ ∆ k t k ) t k t k   Construction of truncation functions: 1. Take R -valued functions ρ ( · ) := max(1 , C 0 | p ( · ) | ) , with C 0 appropriately chosen 2. Choose φ ∈ C 2 b ( R ) such that φ ( x ) 1 [ − 3 / 2 , 3 / 2] ( x ) = x , || φ || ∞ ≤ 2 , and || φ ′ || ∞ ≤ 1 � � � � X ( π ) x 3. ˆ ρ k ( x ) := ρ · φ t k ρ ( X ( π ) tk ) Properties: ρ k ( √ ∆ k ˆ t k ) = √ ∆ k ˆ Y ( n ) Y ( n ) Z ( n ) Z ( n ) ρ k ( ˆ t k ) = ˆ ◮ ˆ and ˆ t k t k ρ k ( x ) | ≤ 2 ρ ( X ( π ) t k ) ∈ L 2 ( X ( π ) ◮ | ˆ t k ) ∀ x ∈ R , 0 ≤ k ≤ N − 1 ◮ Lipschitz continuous with Lipschitz constant 1 Plamen Turkedijev Humboldt Universit¨ at zu Berlin

  6. Assumptions and framework Projection algorithm Approximation Monte Carlo algorithm Numerical examples Error estimate � L Normal equations: Set V L t k := 1 l =1 v l t k [ v l t k ] tr L N − 1 � � �� θ ( n +1) ξ ( π ) − f ( t j , X ( π ) Y ( n ) Z ( n ) v t k [ v t k ] tr � ˆ � t j , ˆ t j , ˆ � = E v t k t j )∆ j E t k j = k L N − 1 � � = 1 ξ ( π,l ) − t k ˆ θ ( n +1 ,L ) � � f ( t j , X ( π,l ) , ˆ Y ( n,L,l ) , ˆ Z ( n,L,l ) V L v l )∆ j t k t k t j t j t j L l =1 j = k Want invertible V L t k : � | V L � v t k [ v t k ] tr � � t k − E | ≤ | π | , A L t 0 := ∀ q = 0 , . . . , D, and 0 ≤ k ≤ N − 1 Plamen Turkedijev Humboldt Universit¨ at zu Berlin

  7. Assumptions and framework Projection algorithm Approximation Monte Carlo algorithm Numerical examples Error estimate Task: N − 1 Find estimate for | 2 + Y ( n ) Y ( n,L ) Z ( n ) Z ( n,L ) 0 ≤ k ≤ N − 1 E | ˆ − ˆ � E | ˆ t k − ˆ | 2 ∆ k Err ( n, π, L ) = max t k t k t k k =0 Use estimate to prove convergence and find rate of convergence w.r.t. L Theorem Assume: ◮ ( X ( π ) p ( X ( π ) � � t k ) 0 ≤ k ≤ N − 1 , t k ) 0 ≤ k ≤ N − 1 have fourth moments ◮ | π | < min(1 , ¯ V ) for ¯ v t k [ v t k ] tr � � V := min 0 ≤ k ≤ N − 1 λ MIN ( E ) N − 1 � | ρ ( P ( π ) � � t k ) | 2 1 [ A L Err ( n, π, L ) ≤ C E t 0 ] C k =0 n − 1 � CN CN � � � ( C | π | ) m 1 + e 2 KN � + (1 − | π | ) 2 L + ( ¯ V − | π | ) L m =1 Plamen Turkedijev Humboldt Universit¨ at zu Berlin

  8. Assumptions and framework Projection algorithm Approximation Monte Carlo algorithm Numerical examples Error estimate First estimate of the error: N − 1 � � | ρ ( X ( π ) � t k ) | 2 1 [ A L Err ( n, π, L ) ≤ C E + t 0 ] C k =0 � t k ) | 2 � θ ( n,L ) θ ( n ) t 0 (ˆ − ˆ CN 0 ≤ k ≤ N − 1 E max | 1 A L t k Decomposition: θ ( n,L ) θ ( n ) t k ) = B (1 ,n ) + B (2 ,n ) + B (3 ,n ) t 0 (ˆ − ˆ 1 A L t k k k k Plamen Turkedijev Humboldt Universit¨ at zu Berlin

  9. Assumptions and framework Projection algorithm Approximation Monte Carlo algorithm Numerical examples Error estimate θ ( n − 1) ˆ Y ( n − 1 ,l ) θ ( n − 1) · p ( X ( π,l ) Z ( n − 1 ,l ) ∆ j · p ( X ( π,l ) Set ˆ := ˆ ) , ˆ Z,tj √ := ) t j t j t j t j Y,t j � t k ] − 1 − E v t k [ v t k ] tr � − 1 � B (1 ,n ) t 0 V L � := [ 1 A L × k N − 1 � � v t k ( ξ ( π ) − t j , X ( π ) Y ( n − 1) Z ( n − 1) � t j , ˆ , ˆ � � E f ∆ j ) t j t j j = k B (2 ,n ) t 0 V L t k ] − 1 × :=[ 1 A L k L N − 1 � 1 � ξ ( π,l ) − � t j , X ( π,l ) Y ( n − 1 ,l ) Z ( n − 1 ,l ) � � , ˆ , ˆ v l � � f ∆ j t k t j t j t j L l =1 j = k N − 1 ��� � � ξ ( π ) − t j , X ( π ) Y ( n − 1) Z ( n − 1) � t j , ˆ , ˆ � � − E v t k f ∆ j t j t j j = k Plamen Turkedijev Humboldt Universit¨ at zu Berlin

  10. Assumptions and framework Projection algorithm Approximation Monte Carlo algorithm Numerical examples Error estimate t 0 V L t k ] − 1 [ 1 A L L � N − 1 � B (3 ,n ) t j , X ( π,l ) Y ( n − 1 ,l ) Z ( n − 1 ,l ) � v l � , ˆ , ˆ � � := f t k k t j t j t j L l =1 j = k �� � t j , X ( π,l ) Y ( n − 1 ,L,l ) Z ( n − 1 ,L,l ) , ˆ , ˆ � − f ∆ j t j t j t j Plamen Turkedijev Humboldt Universit¨ at zu Berlin

  11. Assumptions and framework Projection algorithm Approximation Monte Carlo algorithm Numerical examples Error estimate k -uniform L 2 -bounds for B ( q,n ) k � � Define � θ � 2 = max 0 ≤ k ≤ N − 1 E | θ k | 2 1 A L t 0 Assume: ◮ ( X ( π ) p ( X ( π ) � � t k ) 0 ≤ k ≤ N − 1 , t k ) 0 ≤ k ≤ N − 1 have fourth moments ◮ | π | < min(1 , ¯ V ) for ¯ � v t k [ v t k ] tr � V := min 0 ≤ k ≤ N − 1 λ MIN ( E ) (a) � ( B (1 ,n ) ) � 2 ≤ C (1 − | π | ) − 2 L − 1 k ) � 2 ≤ C ( λ MIN ( E (b) � ( B (2 ,n ) v t k [ v t k ] tr � ) − | π | ) − 1 L − 1 � k (c) E � ( B (3 ,n ) θ ( n − 1) − ˆ 0 ≤ C | π | ( ¯ V − | π | ) − 1 � (ˆ ) � 2 θ ( n − 1 ,L ) ) 1 A L t 0 � 2 0 , k e − 2 K ( N − k ) | θ k | � � where � θ � 0 := max 0 ≤ k ≤ N − 1 Plamen Turkedijev Humboldt Universit¨ at zu Berlin

  12. Assumptions and framework Projection algorithm Approximation Monte Carlo algorithm Numerical examples Error estimate Proof (c). V − | π | ) � ( B (3 ,n ) ( ¯ ) � 2 0 ≤ k ≤ N − 1 e − 2 K ( N − k ) × 0 ≤ max k   L N − 1 2 � � 1 ( f (1 ,n − 1 ,l ) − f (2 ,n − 1 ,l ) � � � � )∆ j E  1 A L � � j j  L t 0 � � l =1 j = k 0 ≤ k ≤ N − 1 e − 2 K ( N − k ) × ≤ C | π | max N − 1 θ ( n − 1) − ˆ � 2 � � e − 2 K ( N − j ) � (ˆ θ ( n − 1 ,L ) ) 1 A L �� � E t 0 � 0 � j = k θ ( n − 1) − ˆ ≤ C | π |� (ˆ θ ( n − 1 ,L ) ) 1 A L t 0 � 2 0 Plamen Turkedijev Humboldt Universit¨ at zu Berlin

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend