control of synchronization in complex oscillator networks
play

Control of synchronization in complex oscillator networks via - PowerPoint PPT Presentation

Control of synchronization in complex oscillator networks via time-delayed feedback Viktor Novi enko 2017 Szeged, Hungary Motivation The synchronous behavior can be desirable or harmful. Power grids Parkinsons disease, essential


  1. Control of synchronization in complex oscillator networks via time-delayed feedback Viktor Novi č enko 2017 Szeged, Hungary

  2. Motivation The synchronous behavior can be desirable or harmful. • Power grids • Parkinson’s disease, essential tremor • Pedestrians on a bridge • Cardiac pacemaker cells • Internal circadian clock The ability to control synchrony in oscillatory networks covers a wide range of real-world applications.

  3. Phase reduction method Phase reduction method allows the approximation of high dimensional dynamics of oscillators with a single-phase variable.     x    has periodic solution  ξ ξ f ( x ) t T t  ϑ  phase gradually increase from 0 to T 1   ϑ   ε Here is a phase response curve – the periodic z  x f ( x ) g ( x , t )   z   T solution of the adjoint equation  z D f ( ξ )     )  ϑ   ε ϑ  ϑ   ξ  T ξ Initial condition for the phase response curve: T 1 z g ( , t z ( 0 ) ( 0 ) 1                      τ τ τ        ε   T T T x t , x t x f g x t , t z t z t A t z t B t       τ where the matrices A t D f ξ ( t ), ξ ( t ) 1              τ ϑ   ε ϑ  ϑ T 1 z g ξ , t B t D f ξ ( t ), ξ ( t ) 2 0           τ  τ   T T Initial condition for the phase response curve: z 0 ξ ( 0 ) z s B s ξ ( s ) ds 1  τ V. Novičenko, K. Pyragas, Physica D 241 , 1090–1098 (2012) K. Kotani et al, Phys. Rev. Lett. 109 , 044101 (2012)

  4. Complex oscillator network – the phase reduction approach Weakly coupled near-identical limit cycle oscillators: without control under the delayed feedback control           ε  ε   τ    ε  ε   x f ( x ) f ( x ) a g ( x , x ) K x t x t x f ( x ) f ( x ) a g ( x , x ) i i i i ij i j i i i i ij i j i i i j j   ϑ                t  τ        τ  x t x t x t T x t x t T T i i i i i i i i i i i π     2 ϕ   ϑ     where t t t By treating a free oscillator as i i i i T       i   ε     x f ( x ) f ( x ) K x t T x t i i i i i i i     ψ  average ϕ t t over the period T i i Applying the phase reduction method for systems with time-delay    ψ ω ε ψ ψ     a h i i ij j i j    ψ  ω  ε ψ  ψ ω      eff eff here the frequencies a h i i ij j i i i j τ        ε T i ω  ω   α  ε  α eff eff i K 1 K Synchronization condition: i i T ψ  ψ   ψ     1 2 N V. Novičenko, Phys. Rev. E 92 , 022919 (2015)

  5. Control of synchronization in a complex oscillator network    K 0 0            ε  ε   τ   x f ( x ) f ( x ) g ( x , x ) K x x a t t  0 0 0 i i i i ij i j i i i    Let’s say K j      0      ψ  ω  ε ψ  ψ  eff eff a h   0 0 0 0 i i ij j i j T τ            1    T i      ε  ξ α  1 where 1 1 ω  ω   α  ε  α C z s s ds eff K eff i 1 K K  i i KC T 0 τ  τ  (i) The delay times are the same T i   ω eff  α K ω  synchronization cannot be controlled i i (ii) The delay times are equal to the natural periods τ   ω  ω eff T i i i i (iii) The delay times are τ  ω eff  T   ω i i i 0       α i T 1 K              ψ  ψ   ψ is a stable solution, under additional assumptions:  h 0 0 , h 0 0 t t t 1 2 N V. Novičenko, Phys. Rev. E 92 , 022919 (2015)

  6. Numerical demonstrations 8 FitzHugh-Nagumo oscillators:    ε   10  ε   eff 4 eff 4 ε   ε  5 3 6 10 1 . 6 10 5 10            F t K x t T x t 1 1 1 1 V. Novičenko, Phys. Rev. E 92 , 022919 (2015)

  7. Odd number limitation              1 x f ( x ) K x t T x t α  1 i i i i i i K  KC According to the odd number limitation theorem,     the periodic solution is unstable, if   ξ ξ t T t i i i   KC 1 E. W. Hooton and A. Amann, Phys. Rev. Lett. 109 , 154101 (2012) What happen for ?   K 1 / C Motion of the Floquet multipliers

  8. Summary The delayed feedback control force applied to a limit cycle oscillator changes its stability properties and, as a consequence, perturbation-induced phase response. The phase model of the oscillator network shows that the coupling strength and the frequencies depend on the parameters of the control. Advantages: • does not require any information about the oscillator model • does not depends on network topology • can be simple realized in experiment • theoretically synchronization can be controlled for the arbitrary small/large coupling strength • the control scheme has only two parameters: control gain and delay time Disadvantages: • the phase model can be derived only for a weak coupling • the control force can disrupt the stability of periodic orbit

  9. The end

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend