context free languages in algebraic geometry and number
play

Context-free languages in Algebraic Geometry and Number Theory Jos - PowerPoint PPT Presentation

Context-free languages in Algebraic Geometry and Number Theory Jos e Manuel Rodr guez Caballero Ph.D. student Laboratoire de combinatoire et dinformatique math ematique (LaCIM) eal (UQ` Universit e du Qu ebec ` a Montr


  1. Context-free languages in Algebraic Geometry and Number Theory Jos´ e Manuel Rodr´ ıguez Caballero Ph.D. student Laboratoire de combinatoire et d’informatique math´ ematique (LaCIM) eal (UQ` Universit´ e du Qu´ ebec ` a Montr´ AM) Presentation at the LFANT Seminar Institut de Math´ ematiques de Bordeaux (IMB) Universit´ e de Bordeaux October 24, 2017 work-in-progress Jos´ e Manuel Rodr´ ıguez Caballero Context-free languages in AG and NT

  2. Motivation To simultaneously compute several arithmetical functions by means of several language-theoretical computations, but just doing one number-theoretical computation. Jos´ e Manuel Rodr´ ıguez Caballero Context-free languages in AG and NT

  3. Part I Kassel-Reutenauer polynomials Jos´ e Manuel Rodr´ ıguez Caballero Context-free languages in AG and NT

  4. Computational definition of P n ( q ) Definition For any integer n ≥ 1, we define the n th Kassel-Reutenauer polynomial as follows : � q n − 1+ k + q n − 1 − k � n − 1 � P n ( q ) := a n , 0 + a n , k , k =1 � � d − 2 n d ≤ 2 k < 2 d − n where a n , k := # d | n : . Furthermore, d we define C n ( q ) := ( q − 1) 2 P n ( q ). Jos´ e Manuel Rodr´ ıguez Caballero Context-free languages in AG and NT

  5. Generating function Theorem ∞ ∞ � (1 − t m ) 2 � C n ( q ) t n . (1 − qt m ) (1 − q − 1 t m ) = 1 + q n m =1 n =1 This result is essentially identity (9.2) in Nathan Jacob Fine, “Basic hypergeometric series and applications”, No. 27, American Mathematical Soc., 1988. Jos´ e Manuel Rodr´ ıguez Caballero Context-free languages in AG and NT

  6. Complex geometric interpretation of C n ( q ) C := Hilb n �� � � �� Consider the Hilbert scheme H n A 1 A 1 C \{ 0 } × C \{ 0 } of n points on the bidimensional complex torus. Theorem (Hausel, Letellier and Rodriguez-Villegas, 2011) For each n ≥ 1 ,the E-polynomial of H n C is C n ( q ) . Jos´ e Manuel Rodr´ ıguez Caballero Context-free languages in AG and NT

  7. Complex geometric interpretation of P n ( q ) Notice that ( C \{ 0 } ) × ( C \{ 0 } ) acts naturally on � � � � A 1 A 1 C \{ 0 } × C \{ 0 } . This action induces an action of ( C \{ 0 } ) × ( C \{ 0 } ) on H n C . Define the geometric quotient � H n C := H n C // (( C \{ 0 } ) × ( C \{ 0 } )). Theorem (Hausel, Letellier and Rodriguez-Villegas, 2011) For each n ≥ 1 ,the E-polynomial of � H n C is P n ( q ) . Jos´ e Manuel Rodr´ ıguez Caballero Context-free languages in AG and NT

  8. Evaluation at roots of unity Theorem (Kassel and Reutenauer, 2016) For any integer n ≥ 1 , (i) P n (1) is the sum of divisors of n, (ii) C n ( − 1) is the number of integer solutions to the equation x 2 + y 2 = n, � �� � √− 1 � C n � is the number of integer solutions to the equation (iii) x 2 + 2 y 2 = n, � � − 1+ √− 3 (iv) 6 Re P n is the number of integer solutions to the 2 equation x 2 + xy + y 2 = n. Jos´ e Manuel Rodr´ ıguez Caballero Context-free languages in AG and NT

  9. Finite fields geometric interpretation of C n ( q ) Consider the Hilbert scheme F q := Hilb n �� � � �� H n A 1 A 1 F q \{ 0 } × F q \{ 0 } of n points on the bidimensional F q -torus. Theorem (Kassel and Reutenauer, 2015) For each n ≥ 1 , t d ∞ dt Z H n F q ( t ) � C n ( q m ) t m = , Z H n F q ( t ) m =1 F q ( t ) is the local zeta function of H n where Z H n F q . Jos´ e Manuel Rodr´ ıguez Caballero Context-free languages in AG and NT

  10. Evaluation at prime powers Theorem (Kassel and Reutenauer, 2015) For any prime power q and any integer n ≥ 1 , C n ( q ) is the number of ideals I of the group algebra F q [ Z ⊕ Z ] such that F q [ Z ⊕ Z ] / I is a vector space of dimension n over F q . Jos´ e Manuel Rodr´ ıguez Caballero Context-free languages in AG and NT

  11. The coefficients of P n ( q ) Theorem (J. M. R. C., 2017) For any integer n ≥ 1 , (i) the largest coefficient of P n ( q ) is F ( n ) , where F ( n ) is the os-Nicolas function a , i.e. Erd¨ F ( n ) := max t > 0 # { d | n : t < d ≤ 2 t } . (ii) the polynomial P n ( q ) has a coefficient greater than 1 if and only if 2 n is the perimeter b of a Pythagorean triangle, (iii) all the coefficients of P n ( q ) are non-zero if and only if n is 2 -densely divisible c . a . Paul Erd¨ os, Jean-Louis Nicolas. M´ ethodes probabilistes et combinatoires en th´ eorie des nombres. Bull. SC. Math 2 (1976) : 301–320. b . The perimeter of a Pythagorean triangle is always an even integer. c . i.e. the quotient of two consecutive divisors of n is less than or equal to 2. Densely divisible numbers were introduced by the international team polymath8 , led by Terence Tao, in order to improve Zhang’s bounded gaps between primes. Jos´ e Manuel Rodr´ ıguez Caballero Context-free languages in AG and NT

  12. Odd-trapezoidal numbers An integer n ≥ 1 is an odd-trapezoidal number if for each pair of integers a ≥ 1 and k ≥ 1, the equality n = a + ( a + 1) + ( a + 2) + ... + ( a + k − 1) implies that k is odd. Jos´ e Manuel Rodr´ ıguez Caballero Context-free languages in AG and NT

  13. Odd-trapezoidal numbers Theorem (J. M. R. C., 2017) For any integer n ≥ 1 , we have that n is odd-trapezoidal if and only if a n , 0 ≥ a n , 1 ≥ a n , 2 ≥ ... ≥ a n , n − 1 , where a n , 0 , a n , 1 , a n , 2 , ..., a n , n − 1 are the coefficients in the computational definition of P n ( q ) . Jos´ e Manuel Rodr´ ıguez Caballero Context-free languages in AG and NT

  14. Conclusion of Part I From the polynomial P n ( q ) it is computationally easy to derive the following information about n : (i) Whether or not 2 n is the perimeter of a Pythagorean triangle. (ii) Whether or not n is 2-densely divisible. (iii) Whether or not n is odd-trapezoidal. (iv) The number of middle divisors 1 of n . (v) The number of integer solutions to the equations x 2 + y 2 = n , x 2 + 2 y 2 = n and x 2 + xy + y 2 = n . (vi) The number of ideals I of the group algebra F q [ Z ⊕ Z ] such that F q [ Z ⊕ Z ] / I is a vector space of dimension n over F q . (vii) The value of Erd¨ os-Nicolas function at n . (viii) The sum of divisors of n . C and � (ix) Topological information about H n H n C . √ 1. i.e the divisors d satisfying � n 2 < d ≤ 2 n . Jos´ e Manuel Rodr´ ıguez Caballero Context-free languages in AG and NT

  15. Part II Language Theory Jos´ e Manuel Rodr´ ıguez Caballero Context-free languages in AG and NT

  16. Passage from Part I to Part II (i) We will encode part of the information from Kassel-Reutenauer polynomials into formal words. (ii) We will translate some of the properties satisfied by Kassel-Reutenauer polynomials into language-theoretical statements. Jos´ e Manuel Rodr´ ıguez Caballero Context-free languages in AG and NT

  17. The non-zero coefficients of C n ( q ) We can express C n ( q ) ∈ Z [ q ], in a unique way, as follows 2 , C n ( q ) = η 0 q e 0 + η 1 q e 1 + ... + η k q e k , for some η 0 , η 1 , ..., η k ∈ { +1 , − 1 } and e 0 , e 1 , ..., e k ∈ Z satisfying : (i) e 0 ≥ e 1 ≥ ... ≥ e k ≥ 0, (ii) for any 0 ≤ j ≤ k − 1, if e j = e j +1 , then η j = η j +1 . So, the vector KR( n ) := ( η 0 , η 1 , ..., η k ) ∈ { +1 , − 1 } k +1 is well-defined. By abuse of notation, we will write KR( n ) as a word over the alphabet { + , −} , identifying + ↔ +1 and − ↔ − 1. 2. Notice that each positive coefficient of C n ( q ) corresponds to the multipli- city of a pole of Z H n F q ( t ). Similarly, each negative coefficient of C n ( q ) corresponds to the multiplicity of a zero of the same rational function. Jos´ e Manuel Rodr´ ıguez Caballero Context-free languages in AG and NT

  18. Example For n = 6, q 12 − q 11 + q 7 − 2 q 6 + q 5 − q + 1 C 6 ( q ) = + q 12 − q 11 + q 7 − q 6 − q 6 + q 5 − q + 1 . = Therefore, KR(6) = + − + − − + − + . Jos´ e Manuel Rodr´ ıguez Caballero Context-free languages in AG and NT

  19. A hidden pattern Notice that KR(75) = + − − + + − + − − + − + + − + − − + − + + − − + can be obtained from the well-matched parentheses ( ) ( ( ) ) ( ( ) ) ( ) by means of the letter-by-letter substitution 3 µ : { ( , ) } ∗ { + , −} ∗ , − → ( �→ + − , ) �→ − + . KR(75) = + − − + + − + − − + − + + − + − − + − + + − − + ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ( ) ( ( ) ) ( ( ) ) ( ) 3. i.e. morphism of free monoids. Here, Σ ∗ denotes the free monoid over the alphabet Σ. Jos´ e Manuel Rodr´ ıguez Caballero Context-free languages in AG and NT

  20. Well-matched parentheses It follows from the computational definition of C n ( q ) that KR( n ) is palindromic. The following property is less obvious. Theorem (J. M. R. C., 2017) For each integer n ≥ 1 , KR( n ) = µ ( w n ) , for some well-matched parentheses w n . → { ( , ) } ∗ by δ ( n ) := w n . Define the function δ : Z ≥ 1 − Jos´ e Manuel Rodr´ ıguez Caballero Context-free languages in AG and NT

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend