conic optimization
play

Conic optimization Aalborg University, June 26th, 2017 Joachim Dahl - PowerPoint PPT Presentation

Conic optimization Aalborg University, June 26th, 2017 Joachim Dahl www.mosek.com Section 1 Linear optimization Linear optimization We minimize a linear function given linear constraints. Example: minimize a linear function x 1 + 2 x 2


  1. Duality in linear optimization Example with both primal and dual infeasibility Consider minimize − x 1 − x 2 subject to x 1 = − 1 x 1 , x 2 ≥ 0 with a dual problem maximize − y � 1 � 1 � � subject to − y ≥ . 0 1 • y = − 1 is a certificate of primal infeasibility, p ⋆ = ∞ • x = (0 , 1) is a certificate of dual infeasibility, d ⋆ = −∞ .

  2. Section 2 Conic optimization

  3. Proper convex cones We consider proper convex cones K in R n : • Closed. • Pointed: K ∩ ( − K ) = { 0 } . • Non-empty interior. Dual-cone: K ∗ = { v ∈ R n | u T v ≥ 0 , ∀ u ∈ K } . If K is a proper cone, then K ⋆ is also proper. We use the notation: x � K y ⇐ ⇒ ( x − y ) ∈ K x ≻ K y ⇐ ⇒ ( x − y ) ∈ int K

  4. Example of cones Quadratic cone (second-order cone, Lorenz cone) � Q n = { x ∈ R n | x 1 ≥ x 2 2 + x 2 3 + · · · + x 2 n } . Q n is self-dual: ( Q n ) ∗ = Q n .

  5. Examples of quadratic cones • Epigraph of absolute value: ( t , x ) ∈ Q 2 . | x | ≤ t ⇐ ⇒ • Epigraph of Euclidean norm: ( t , x ) ∈ Q n − 1 , � x � 2 ≤ t ⇐ ⇒ � where x ∈ R n and � x � = x 2 1 + · · · + x 2 n . • Second-order cone inequality: � Ax + b � 2 ≤ c T x + d ( c T x + d , Ax + b ) ∈ Q m +1 ⇐ ⇒ for A ∈ R m × n , b ∈ R m , c ∈ R n , d ∈ R .

  6. Examples of quadratic cones • Epigraph of absolute value: ( t , x ) ∈ Q 2 . | x | ≤ t ⇐ ⇒ • Epigraph of Euclidean norm: ( t , x ) ∈ Q n − 1 , � x � 2 ≤ t ⇐ ⇒ � where x ∈ R n and � x � = x 2 1 + · · · + x 2 n . • Second-order cone inequality: � Ax + b � 2 ≤ c T x + d ( c T x + d , Ax + b ) ∈ Q m +1 ⇐ ⇒ for A ∈ R m × n , b ∈ R m , c ∈ R n , d ∈ R .

  7. Examples of quadratic cones • Epigraph of absolute value: ( t , x ) ∈ Q 2 . | x | ≤ t ⇐ ⇒ • Epigraph of Euclidean norm: ( t , x ) ∈ Q n − 1 , � x � 2 ≤ t ⇐ ⇒ � where x ∈ R n and � x � = x 2 1 + · · · + x 2 n . • Second-order cone inequality: � Ax + b � 2 ≤ c T x + d ( c T x + d , Ax + b ) ∈ Q m +1 ⇐ ⇒ for A ∈ R m × n , b ∈ R m , c ∈ R n , d ∈ R .

  8. Examples of quadratic cones Robust optimization with ellipsoidal uncertainty Ellipsoidal set: E = { x ∈ R n | � P ( x − a ) � 2 ≤ 1 } � x ∈ R n | x = P − 1 y + a , � y � 2 ≤ 1 � = . Worst-case realization of a linear function over E : c T x = a T x + sup y T P − 1 x = a T x + � P − 1 x � 2 . sup c ∈E � y � 2 ≤ 1 Robust LP: a T x + t minimize c T x minimize sup subject to Ax = b c ∈E subject to Ax = b ( t , P − 1 x ) ∈ Q n +1 x ≥ 0 , x ≥ 0 .

  9. Examples of quadratic cones Robust optimization with ellipsoidal uncertainty Ellipsoidal set: E = { x ∈ R n | � P ( x − a ) � 2 ≤ 1 } � x ∈ R n | x = P − 1 y + a , � y � 2 ≤ 1 � = . Worst-case realization of a linear function over E : c T x = a T x + sup y T P − 1 x = a T x + � P − 1 x � 2 . sup c ∈E � y � 2 ≤ 1 Robust LP: a T x + t minimize c T x minimize sup subject to Ax = b c ∈E subject to Ax = b ( t , P − 1 x ) ∈ Q n +1 x ≥ 0 , x ≥ 0 .

  10. Examples of quadratic cones Robust optimization with ellipsoidal uncertainty Ellipsoidal set: E = { x ∈ R n | � P ( x − a ) � 2 ≤ 1 } � x ∈ R n | x = P − 1 y + a , � y � 2 ≤ 1 � = . Worst-case realization of a linear function over E : c T x = a T x + sup y T P − 1 x = a T x + � P − 1 x � 2 . sup c ∈E � y � 2 ≤ 1 Robust LP: a T x + t minimize c T x minimize sup subject to Ax = b c ∈E subject to Ax = b ( t , P − 1 x ) ∈ Q n +1 x ≥ 0 , x ≥ 0 .

  11. Example of cones Rotated quadratic cone Rotated quadratic cone: r = { x ∈ R n | 2 x 1 x 2 ≥ x 2 Q n 3 + . . . x 2 n , x 1 , x 2 ≥ 0 } . Related to standard quadratic cone: x ∈ Q n ( T n x ) ∈ Q n ⇐ ⇒ r for √ √   1 / 2 1 / 2 0 √ √  . T n := 1 / 2 − 1 / 2 0  0 0 I n − 2 r ) ∗ = Q n Q n r is self-dual: ( Q n r .

  12. Examples of rotated quadratic cones • Epigraph of squared Euclidean norm: � x � 2 (1 / 2 , t , x ) ∈ Q n +2 2 ≤ t ⇐ ⇒ . r • Convex quadratic inequality: (1 / 2) x T Qx ≤ c T x + d (1 / 2 , c T x + d , F T x ) ∈ Q k +2 ⇐ ⇒ r with Q = F T F , F ∈ R n × k . So we can write QCQPs as conic problems.

  13. Examples of rotated quadratic cones • Epigraph of squared Euclidean norm: � x � 2 (1 / 2 , t , x ) ∈ Q n +2 2 ≤ t ⇐ ⇒ . r • Convex quadratic inequality: (1 / 2) x T Qx ≤ c T x + d (1 / 2 , c T x + d , F T x ) ∈ Q k +2 ⇐ ⇒ r with Q = F T F , F ∈ R n × k . So we can write QCQPs as conic problems.

  14. Examples of rotated quadratic cones • Convex hyperbolic function: √ 1 2) ∈ Q 3 x ≤ t , x > 0 ⇐ ⇒ ( x , t , r . • Square roots: √ x ≥ t , x ≥ 0 (1 2 , x , t ) ∈ Q 3 ⇐ ⇒ r . • Convex positive rational power: x 3 / 2 ≤ t , x ≥ 0 ( s , t , x ) , ( x , 1 / 8 , s ) ∈ Q 3 ⇐ ⇒ r . • Convex negative rational power: √ 1 ( t , 1 2) ∈ Q 3 x 2 ≤ t , x > 0 ⇐ ⇒ 2 , s ) , ( x , s , r .

  15. Examples of rotated quadratic cones • Convex hyperbolic function: √ 1 2) ∈ Q 3 x ≤ t , x > 0 ⇐ ⇒ ( x , t , r . • Square roots: √ x ≥ t , x ≥ 0 (1 2 , x , t ) ∈ Q 3 ⇐ ⇒ r . • Convex positive rational power: x 3 / 2 ≤ t , x ≥ 0 ( s , t , x ) , ( x , 1 / 8 , s ) ∈ Q 3 ⇐ ⇒ r . • Convex negative rational power: √ 1 ( t , 1 2) ∈ Q 3 x 2 ≤ t , x > 0 ⇐ ⇒ 2 , s ) , ( x , s , r .

  16. Examples of rotated quadratic cones • Convex hyperbolic function: √ 1 2) ∈ Q 3 x ≤ t , x > 0 ⇐ ⇒ ( x , t , r . • Square roots: √ x ≥ t , x ≥ 0 (1 2 , x , t ) ∈ Q 3 ⇐ ⇒ r . • Convex positive rational power: x 3 / 2 ≤ t , x ≥ 0 ( s , t , x ) , ( x , 1 / 8 , s ) ∈ Q 3 ⇐ ⇒ r . • Convex negative rational power: √ 1 ( t , 1 2) ∈ Q 3 x 2 ≤ t , x > 0 ⇐ ⇒ 2 , s ) , ( x , s , r .

  17. Examples of rotated quadratic cones • Convex hyperbolic function: √ 1 2) ∈ Q 3 x ≤ t , x > 0 ⇐ ⇒ ( x , t , r . • Square roots: √ x ≥ t , x ≥ 0 (1 2 , x , t ) ∈ Q 3 ⇐ ⇒ r . • Convex positive rational power: x 3 / 2 ≤ t , x ≥ 0 ( s , t , x ) , ( x , 1 / 8 , s ) ∈ Q 3 ⇐ ⇒ r . • Convex negative rational power: √ 1 ( t , 1 2) ∈ Q 3 x 2 ≤ t , x > 0 ⇐ ⇒ 2 , s ) , ( x , s , r .

  18. Semidefinite matrices Basic definitions • We denote n × n symmetric matrices by S n . • Standard inner product for matrices: � � V , W � := tr ( V T W ) = V ij W ij = vec ( V ) T vec ( W ) . ij • X is semidefinite if and only if 1 z T Xz ≥ 0, ∀ z ∈ R n . 2 All the eigenvalues of X are nonnegative. 3 X is a Grammian matrix, X = V T V . • The (semi)definite matrices form a cone ( S + ) S ++ . Exercise: Show the three definitions are equivalent.

  19. Semidefinite matrices Basic definitions • We denote n × n symmetric matrices by S n . • Standard inner product for matrices: � � V , W � := tr ( V T W ) = V ij W ij = vec ( V ) T vec ( W ) . ij • X is semidefinite if and only if 1 z T Xz ≥ 0, ∀ z ∈ R n . 2 All the eigenvalues of X are nonnegative. 3 X is a Grammian matrix, X = V T V . • The (semi)definite matrices form a cone ( S + ) S ++ . Exercise: Show the three definitions are equivalent.

  20. Semidefinite matrices Basic definitions • We denote n × n symmetric matrices by S n . • Standard inner product for matrices: � � V , W � := tr ( V T W ) = V ij W ij = vec ( V ) T vec ( W ) . ij • X is semidefinite if and only if 1 z T Xz ≥ 0, ∀ z ∈ R n . 2 All the eigenvalues of X are nonnegative. 3 X is a Grammian matrix, X = V T V . • The (semi)definite matrices form a cone ( S + ) S ++ . Exercise: Show the three definitions are equivalent.

  21. Semidefinite matrices Basic definitions • We denote n × n symmetric matrices by S n . • Standard inner product for matrices: � � V , W � := tr ( V T W ) = V ij W ij = vec ( V ) T vec ( W ) . ij • X is semidefinite if and only if 1 z T Xz ≥ 0, ∀ z ∈ R n . 2 All the eigenvalues of X are nonnegative. 3 X is a Grammian matrix, X = V T V . • The (semi)definite matrices form a cone ( S + ) S ++ . Exercise: Show the three definitions are equivalent.

  22. Semidefinite matrices Basic definitions Dual cone: + ) ∗ = { Z ∈ R n × n | � X , Z � ≥ 0 , ∀ X ∈ S n ( S n + } . + ) ∗ = S n The semidefinite is self-dual: ( S n + . Easy to prove: Assume Z � 0 so that Z = U T U and X = V T V . � X , Z � = � V T V , U T U � = tr ( UV T )( UV T ) T = � UV T � 2 F ≥ 0 . Conversely assume Z �� 0. Then ∃ w ∈ R n such that w T Zw = � ww T , Z � = � X , Z � < 0 .

  23. Positive semidefinite matrices Schur’s lemma Schur’s lemma: � � C T B B − C T D − 1 C ≻ 0 , C ≻ 0 , D ≻ 0 . ≻ 0 ⇐ ⇒ C D Example: � � x T 1 t t x T x < t ≻ 0 ⇐ ⇒ ⇐ ⇒ � x � < t , x tI i.e., quadratic cone can be embedded in a semidefinite cone.

  24. A geometric example The pillow spectrahedron The convex set � � � � 1 x y ( x , y , z ) ∈ R 3 | S = ≻ 0 , x 1 z y z 1 is called a pillow . Exercise: Characterize the restriction S | z =0 .

  25. Eigenvalue optimization Symmetric matrices F ( x ) = F 0 + x 1 F 1 + · · · + x m F m , F i ∈ S m . • Minimize largest eigenvalue λ 1 ( F ( x )): minimize γ subject to γ I � F ( x ) , • Maximize smallest eigenvalue λ n ( F ( x )): maximize γ subject to F ( x ) � γ I , • Minimize eigenvalue spread λ 1 ( F ( x )) − λ n ( F ( x )): minimize γ − λ subject to γ I � F ( x ) � λ I ,

  26. Eigenvalue optimization Symmetric matrices F ( x ) = F 0 + x 1 F 1 + · · · + x m F m , F i ∈ S m . • Minimize largest eigenvalue λ 1 ( F ( x )): minimize γ subject to γ I � F ( x ) , • Maximize smallest eigenvalue λ n ( F ( x )): maximize γ subject to F ( x ) � γ I , • Minimize eigenvalue spread λ 1 ( F ( x )) − λ n ( F ( x )): minimize γ − λ subject to γ I � F ( x ) � λ I ,

  27. Eigenvalue optimization Symmetric matrices F ( x ) = F 0 + x 1 F 1 + · · · + x m F m , F i ∈ S m . • Minimize largest eigenvalue λ 1 ( F ( x )): minimize γ subject to γ I � F ( x ) , • Maximize smallest eigenvalue λ n ( F ( x )): maximize γ subject to F ( x ) � γ I , • Minimize eigenvalue spread λ 1 ( F ( x )) − λ n ( F ( x )): minimize γ − λ subject to γ I � F ( x ) � λ I ,

  28. Matrix norms Nonsymmetric matrices F i ∈ R n × p . F ( x ) = F 0 + x 1 F 1 + · · · + x m F m , � • Frobenius norm: � F ( x ) � F := � F ( x ) , F ( x ) � , ( t , vec ( F ( x ))) ∈ Q np +1 , � F ( x ) � F ≤ t ⇔ • Induced ℓ 2 norm: � F ( x ) � 2 := max σ k ( F ( x )), k minimize t � � F ( x ) T tI subject to � 0 , F ( x ) tI corresponds to the largest eigenvalue for F ( x ) ∈ S n + .

  29. Matrix norms Nonsymmetric matrices F i ∈ R n × p . F ( x ) = F 0 + x 1 F 1 + · · · + x m F m , � • Frobenius norm: � F ( x ) � F := � F ( x ) , F ( x ) � , ( t , vec ( F ( x ))) ∈ Q np +1 , � F ( x ) � F ≤ t ⇔ • Induced ℓ 2 norm: � F ( x ) � 2 := max σ k ( F ( x )), k minimize t � � F ( x ) T tI subject to � 0 , F ( x ) tI corresponds to the largest eigenvalue for F ( x ) ∈ S n + .

  30. Nearest correlation matrix Consider S = { X ∈ S n + | X ii = 1 , i = 1 , . . . , n } . For a symmetric A ∈ R n × n , the nearest correlation matrix is X ⋆ = arg min X ∈ S � A − X � F , which corresponds to a mixed SOCP/SDP, minimize t subject to � vec ( A − X ) � 2 ≤ t diag ( X ) = e X � 0 . MOSEK is limited by the many constraints to, say n < 200.

  31. Nearest correlation matrix Consider S = { X ∈ S n + | X ii = 1 , i = 1 , . . . , n } . For a symmetric A ∈ R n × n , the nearest correlation matrix is X ⋆ = arg min X ∈ S � A − X � F , which corresponds to a mixed SOCP/SDP, minimize t subject to � vec ( A − X ) � 2 ≤ t diag ( X ) = e X � 0 . MOSEK is limited by the many constraints to, say n < 200.

  32. Combinatorial relaxations Consider a binary problem x T Qx + c T x minimize subject to x i ∈ { 0 , 1 } , i = 1 , . . . , n . where Q ∈ S n can be indefinite. • Rewrite binary constraints x i ∈ { 0 , 1 } : x 2 X = xx T , i = x i ⇐ ⇒ diag ( X ) = x . • Semidefinite relaxation: X � xx T , diag ( X ) = x .

  33. Combinatorial relaxations Consider a binary problem x T Qx + c T x minimize subject to x i ∈ { 0 , 1 } , i = 1 , . . . , n . where Q ∈ S n can be indefinite. • Rewrite binary constraints x i ∈ { 0 , 1 } : x 2 X = xx T , i = x i ⇐ ⇒ diag ( X ) = x . • Semidefinite relaxation: X � xx T , diag ( X ) = x .

  34. Combinatorial relaxations Consider a binary problem x T Qx + c T x minimize subject to x i ∈ { 0 , 1 } , i = 1 , . . . , n . where Q ∈ S n can be indefinite. • Rewrite binary constraints x i ∈ { 0 , 1 } : x 2 X = xx T , i = x i ⇐ ⇒ diag ( X ) = x . • Semidefinite relaxation: X � xx T , diag ( X ) = x .

  35. Combinatorial relaxations Lifted non-convex problem: � Q , X � + c T x minimize subject to diag ( X ) = x X = xx T . Semidefinite relaxation: � Q , X � + c T x minimize subject to diag ( X ) = x � X � x � 0 . x T 1 • Relaxation is exact if X = xx T . • Otherwise can be strengthened, e.g., by adding X ij ≥ 0.

  36. Combinatorial relaxations Lifted non-convex problem: � Q , X � + c T x minimize subject to diag ( X ) = x X = xx T . Semidefinite relaxation: � Q , X � + c T x minimize subject to diag ( X ) = x � X � x � 0 . x T 1 • Relaxation is exact if X = xx T . • Otherwise can be strengthened, e.g., by adding X ij ≥ 0.

  37. Combinatorial relaxations Lifted non-convex problem: � Q , X � + c T x minimize subject to diag ( X ) = x X = xx T . Semidefinite relaxation: � Q , X � + c T x minimize subject to diag ( X ) = x � X � x � 0 . x T 1 • Relaxation is exact if X = xx T . • Otherwise can be strengthened, e.g., by adding X ij ≥ 0.

  38. Combinatorial relaxations Lifted non-convex problem: � Q , X � + c T x minimize subject to diag ( X ) = x X = xx T . Semidefinite relaxation: � Q , X � + c T x minimize subject to diag ( X ) = x � X � x � 0 . x T 1 • Relaxation is exact if X = xx T . • Otherwise can be strengthened, e.g., by adding X ij ≥ 0.

  39. Relaxations for boolean optimization Same approach used for boolean constraints x i ∈ {− 1 , +1 } . Lifting of boolean constraints Rewrite boolean constraints x i ∈ {− 1 , 1 } : x 2 X = xx T , i = 1 ⇐ ⇒ diag ( X ) = e . Semidefinite relaxation of boolean constraints X � xx T , diag ( X ) = e .

  40. Relaxations for boolean optimization Example: MAXCUT Undirected graph G with vertices V and edges E . A cut partitions V into disjoint sets S and T with cut-set I = { ( u , v ) ∈ E | u ∈ S , v ∈ T } . The capacity of a cut is | I | . The cut { v 2 , v 4 , v 5 } has capacity 9.

  41. Relaxations for boolean optimization Example: MAXCUT Let � +1 , v i ∈ S x i = − 1 , v i / ∈ S and assume x i ∈ S . Then � 2 , v j ∈ S 1 − x i x j = ∈ S . 0 , v j / If A is the adjancency matrix for G , then the capacity is cap( x ) = 1 (1 − x i x j ) = 1 � � (1 − x i x j ) A ij , 2 4 ( i , j ) ∈ E i , j i.e, the MAXCUT problem is 1 4 e T Ae − 1 4 x T Ax maximize x ∈ {− 1 , +1 } n . subject to Exercise: Implement a SDP relaxation for G on the previous slide.

  42. Sums-of-squares relaxations • f : multivariate polynomial of degree 2 d . • v d = (1 , x 1 , x 2 , . . . , x n , x 2 1 , x 1 x 2 , . . . , x 2 n , . . . , x d n ). Vector of monomials of degree d or less. Sums-of-squares representation f is a sums-of-squares (SOS) iff f ( x 1 , . . . , x n ) = v T d Qv d , Q � 0 . If Q = LL T then m � f ( x 1 , . . . , x n ) = v T d LL T v d = ( l T i v d ) 2 . i =1 Sufficient condition for f ( x 1 , . . . , x n ) ≥ 0.

  43. Sums-of-squares relaxations • f : multivariate polynomial of degree 2 d . • v d = (1 , x 1 , x 2 , . . . , x n , x 2 1 , x 1 x 2 , . . . , x 2 n , . . . , x d n ). Vector of monomials of degree d or less. Sums-of-squares representation f is a sums-of-squares (SOS) iff f ( x 1 , . . . , x n ) = v T d Qv d , Q � 0 . If Q = LL T then m � f ( x 1 , . . . , x n ) = v T d LL T v d = ( l T i v d ) 2 . i =1 Sufficient condition for f ( x 1 , . . . , x n ) ≥ 0.

  44. A simple example Consider f ( x , z ) = 2 x 4 + 2 x 3 z − x 2 z 2 + 5 z 4 , homogeneous of degree 4, so we only need � z 2 � x 2 v = . xz Comparing cofficients of f ( x , z ) and v T Qv = � Q , vv T � ,     x 4 x 3 z x 2 z 2 q 00 q 01 q 02  , x 3 z x 2 z 2 xz 3 � Q , vv T � = � q 10 q 11 q 12  �   x 2 z 2 xz 3 z 4 q 20 q 21 q 22 we see that f ( x , z ) is SOS iff Q � 0 and q 00 = 2 , 2 q 10 = 2 , 2 q 20 + q 11 = − 1 , 2 q 21 = 0 , q 22 = 5 .

  45. A simple example Consider f ( x , z ) = 2 x 4 + 2 x 3 z − x 2 z 2 + 5 z 4 , homogeneous of degree 4, so we only need � z 2 � x 2 v = . xz Comparing cofficients of f ( x , z ) and v T Qv = � Q , vv T � ,     x 4 x 3 z x 2 z 2 q 00 q 01 q 02  , x 3 z x 2 z 2 xz 3 � Q , vv T � = � q 10 q 11 q 12  �   x 2 z 2 xz 3 z 4 q 20 q 21 q 22 we see that f ( x , z ) is SOS iff Q � 0 and q 00 = 2 , 2 q 10 = 2 , 2 q 20 + q 11 = − 1 , 2 q 21 = 0 , q 22 = 5 .

  46. Applications in polynomial optimization f ( x , z ) = 4 x 2 − 21 10 x 4 + 1 3 x 6 + xz − 4 z 2 + 4 z 4 Global lower bound Replace non-tractable problem, 6 5 minimize f ( x , z ) 4 3 f ( x, z ) 2 by a tractable lower bound 1 0 maximize t -1 -2 subject to f ( x , z ) − t is SOS . -1.0 -0.5 -2.0 -1.5 -1.0 0.0 -0.5 z 0.0 0.5 0.5 1.0 x 1.5 Relaxation finds the global optimum t = − 1 . 031.

  47. f ( x , z ) − t = 4 x 2 − 21 10 x 4 + 1 3 x 6 + xz − 4 z 2 + 4 z 4 − t x 2 z 2 x 3 x 2 z xz 2 z 3  1  x z xz x 2 x 3 x 2 z xz 2 x 4 x 3 z x 2 z 2 xz 3 x xz    z 2 x 2 z xz 2 z 3 x 3 z x 2 z 2 xz 3 z 4  z xz     x 2 x 3 x 2 z x 4 x 3 z x 2 z 2 x 5 x 4 z x 3 z 2 x 2 z 3     x 2 z xz 2 x 3 z x 2 z 2 xz 3 x 4 z x 3 z 2 x 2 z 3 xz 4 xz vv T =     z 2 xz 2 z 3 x 2 z 2 xz 3 z 4 x 3 z 2 x 2 z 3 xz 4 y 5     x 3 x 4 x 3 z x 5 x 4 z x 3 z 2 x 6 x 5 z x 4 z 2 x 3 z 3     x 2 z x 3 z x 2 z 2 x 4 z x 3 z 2 x 2 z 3 x 5 z x 4 z 2 x 3 z 3 x 2 z 4      xz 2 x 2 z 2 xz 3 x 3 z 2 x 2 z 3 xz 4 x 4 z 2 x 3 z 3 x 2 z 4 xz 5    z 3 xz 3 z 4 x 2 z 3 xz 4 z 5 x 3 z 3 x 2 z 4 xz 5 z 6 By comparing cofficients of v T Qv and f ( x , z ) − t : (2 q 72 + q 44 ) = − 21 q 77 = 1 q 00 = − t , (2 q 30 + q 11 ) = 4 , 10 , 3 2( q 51 + q 32 ) = 1 , (2 q 61 + q 33 ) = − 4 , (2 q 10 , 3 + q 66 ) = 4 2 q 10 = 0 , 2 q 20 = 0 , 2( q 71 + q 42 ) = 0 , . . . A standard SDP with a 10 × 10 variable and 28 constraints.

  48. Nonnegative polynomials • Univariate polynomial of degree 2 n : f ( x ) = c 0 + c 1 x + · · · + c 2 n x 2 n . • Nonnegativity is equivalent to SOS, i.e., f ( x ) = v T Qv , f ( x ) ≥ 0 ⇐ ⇒ Q � 0 with v = (1 , x , . . . , x n ). • Simple extensions for nonnegativity on a subinterval I ⊂ R .

  49. Nonnegative polynomials • Univariate polynomial of degree 2 n : f ( x ) = c 0 + c 1 x + · · · + c 2 n x 2 n . • Nonnegativity is equivalent to SOS, i.e., f ( x ) = v T Qv , f ( x ) ≥ 0 ⇐ ⇒ Q � 0 with v = (1 , x , . . . , x n ). • Simple extensions for nonnegativity on a subinterval I ⊂ R .

  50. Nonnegative polynomials • Univariate polynomial of degree 2 n : f ( x ) = c 0 + c 1 x + · · · + c 2 n x 2 n . • Nonnegativity is equivalent to SOS, i.e., f ( x ) = v T Qv , f ( x ) ≥ 0 ⇐ ⇒ Q � 0 with v = (1 , x , . . . , x n ). • Simple extensions for nonnegativity on a subinterval I ⊂ R .

  51. Polynomial interpolation Fit a polynomial of degree n to a set of points ( x j , y j ), f ( x j ) = y j , j = 1 , . . . , m , i.e., linear equality constraints in c ,       x 2 x n 1 x 1 . . . c 0 y 1 1 1 x 2 x n 1 . . . x 2 c 1 y 2       2 2        = . . . . . .  . . . .   .   .  . . . . . .      x 2 x n 1 x m . . . c n y m m m Semidefinite shape constraints: • Nonnegativity f ( x ) ≥ 0. • Monotonicity f ′ ( x ) ≥ 0. • Convexity f ′′ ( x ) ≥ 0.

  52. Polynomial interpolation Fit a polynomial of degree n to a set of points ( x j , y j ), f ( x j ) = y j , j = 1 , . . . , m , i.e., linear equality constraints in c ,       x 2 x n 1 x 1 . . . c 0 y 1 1 1 x 2 x n 1 . . . x 2 c 1 y 2       2 2        = . . . . . .  . . . .   .   .  . . . . . .      x 2 x n 1 x m . . . c n y m m m Semidefinite shape constraints: • Nonnegativity f ( x ) ≥ 0. • Monotonicity f ′ ( x ) ≥ 0. • Convexity f ′′ ( x ) ≥ 0.

  53. Polynomial interpolation A specific example Smooth interpolation f 2 1 Minimize largest derivative, x ∈ [ − 1 , 1] | f ′ ( x ) | minimize max 1 2 subject to f ( − 1) = 1 f (0) = 0 f (1) = 1 x − 1 1 or equivalently f 2 ( x ) = x 2 f ′ 2 (1) = 2 minimize z subject to − z ≤ f ′ ( x ) ≤ z f ( − 1) = 1 f (0) = 0 f (1) = 1 .

  54. Polynomial interpolation A specific example Smooth interpolation 1 Minimize largest derivative, x ∈ [ − 1 , 1] | f ′ ( x ) | minimize max f 4 1 2 subject to f ( − 1) = 1 f (0) = 0 f (1) = 1 x − 1 1 or equivalently f 2 ( x ) = x 2 f ′ 2 (1) = 2 minimize z subject to − z ≤ f ′ ( x ) ≤ z √ f 4 ( x ) = 3 2 x 2 − 1 4 ( 1 2 x 4 f ′ √ ) = 2 f ( − 1) = 1 2 f (0) = 0 f (1) = 1 .

  55. Polynomial interpolation A specific example Smooth interpolation 1 Minimize largest derivative, x ∈ [ − 1 , 1] | f ′ ( x ) | minimize max 1 2 subject to f ( − 1) = 1 f 16 f (0) = 0 f (1) = 1 x − 1 1 or equivalently f 2 ( x ) = x 2 f ′ 2 (1) = 2 minimize z subject to − z ≤ f ′ ( x ) ≤ z √ f 4 ( x ) = 3 2 x 2 − 1 4 ( 1 2 x 4 f ′ √ ) = 2 f ( − 1) = 1 2 f (0) = 0 f (1) = 1 .

  56. Polynomial interpolation A specific example Smooth interpolation f 2 1 Minimize largest derivative, x ∈ [ − 1 , 1] | f ′ ( x ) | minimize max f 4 1 2 subject to f ( − 1) = 1 f 16 f (0) = 0 f (1) = 1 x − 1 1 or equivalently f 2 ( x ) = x 2 f ′ 2 (1) = 2 minimize z subject to − z ≤ f ′ ( x ) ≤ z √ f 4 ( x ) = 3 2 x 2 − 1 4 ( 1 2 x 4 f ′ √ ) = 2 f ( − 1) = 1 2 f (0) = 0 f (1) = 1 .

  57. Optimizing over Hermitian semidefinite matrices Let X ∈ H n + be a Hermitian semidefinite matrix of order n with inner product � � V , W � := tr ( V H W ) = V ∗ ij W ij = vec ( V ) H vec ( W ) . ij Then z H Xz = ( ℜ z − i ℑ z ) T ( ℜ X + i ℑ X )( ℜ z + i ℑ z ) � ℜ z � T � ℜ X � � ℜ z � −ℑ X ∀ z ∈ C n . = ≥ 0 , ℑ z ℑ X ℜ X ℑ z In other words, � ℜ X � −ℑ X ∈ S 2 n X ∈ H n ⇐ ⇒ + . + ℑ X ℜ X Note skew-symmetry ℑ X = −ℑ X T .

  58. Optimizing over Hermitian semidefinite matrices Let X ∈ H n + be a Hermitian semidefinite matrix of order n with inner product � � V , W � := tr ( V H W ) = V ∗ ij W ij = vec ( V ) H vec ( W ) . ij Then z H Xz = ( ℜ z − i ℑ z ) T ( ℜ X + i ℑ X )( ℜ z + i ℑ z ) � ℜ z � T � ℜ X � � ℜ z � −ℑ X ∀ z ∈ C n . = ≥ 0 , ℑ z ℑ X ℜ X ℑ z In other words, � ℜ X � −ℑ X ∈ S 2 n X ∈ H n ⇐ ⇒ + . + ℑ X ℜ X Note skew-symmetry ℑ X = −ℑ X T .

  59. Nonnegative trigonometric polynomials Consider a trigonometric polynomial: n � x i z − i ) , f ( z ) = x 0 + 2 ℜ ( | z | = 1 i =1 parametrized by x ∈ R × C n . Let T i be Toeplitz matrices with � 1 , k − l = i [ T i ] kl = i = 0 , . . . , n . 0 , otherwise Then f ( z ) ≥ 0 on the unit-circle iff X ∈ H n +1 , x i = � X , T i � , i = 0 , . . . , n . + Proved by Nesterov. Simple extensions for nonnegativity on subintervals.

  60. Cones of nonnegative trigonometric polynomials Filter design example Consider a transfer function : n � x k e − j ω k ) . H ( ω ) = x 0 + 2 ℜ ( k =1 We can design a lowpass filter by solving minimize t subject to 0 ≤ H ( ω ) ∀ ω ∈ [0 , π ] 1 − δ ≤ H ( ω ) ≤ 1 + δ ∀ ω ∈ [0 , ω p ] H ( ω ) ≤ ∀ ω ∈ [ ω s , π ] , t where ω s and ω s are design parameters. The constraints all have simple semidefinite characterizations.

  61. Cones of nonnegative trigonometric polynomials Filter design example Transfer function for n = 10 , δ = 0 . 05 , ω p = π/ 4 , ω s = ω p + π/ 8.

  62. Power cone The ( n + 1)-dimensional power-cone is � x ∈ R n +1 | x α 1 � 1 x α 2 2 · · · x α n K α = ≥ | x n +1 | , x 1 , . . . , x n ≥ 0 n for α > 0 , e T α = 1. Dual cone: � s ∈ R n +1 | ( s 1 /α 1 ) α 1 · · · ( s n /α n ) α n ≥ | s n +1 | , s 1 , . . . , s n ≥ 0 � K ∗ α = The power cone is self-dual: T α K ∗ α = K α where T α := Diag ( α 1 , . . . , α n , 1) ≻ 0.

  63. Power cone Simple examples Three dimensional power cone: Q α = { x ∈ R 3 | x α 1 x 1 − α ≥ | x 3 | , x 1 , x 2 ≥ 0 } . 2 • Epigraph of convex power p ≥ 1: | x | p ≤ t ⇐ ⇒ ( t , 1 , x ) ∈ Q 1 / p . • Epigraph of p -norm: e T z = t . � x � p ≤ t ⇐ ⇒ ( z i , t , x i ) ∈ Q 1 / p , �� � 1 / p | x i | p where � x � p := . i

  64. Power cone 0.5 x 3 0.0 0 0.5 x 1 0 x 2 1 1 Q 3 / 4

  65. Power cone 0.5 x 3 0.0 0 0.5 x 1 0 x 2 1 1 Q 1 / 2

  66. Power cone 0.5 x 3 0.0 0 0.5 x 1 0 x 2 1 1 Q 1 / 4

  67. Exponential cone Exponential cone: K exp = cl { x ∈ R 3 | x 1 ≥ x 2 e x 3 / x 2 , x 2 > 0 } = { x ∈ R 3 | x 1 ≥ x 2 e x 3 / x 2 , x 2 > 0 } ∪ ( R + × { 0 } × R − ) Dual cone: � s 3 − s 2 � exp = cl { s ∈ R 3 | s 1 ≥ ( − s 3 ) exp K ∗ , s 3 < 0 } − s 3 � s 3 − s 2 � = { s ∈ R 3 | s 1 ≥ ( − s 3 ) exp , s 3 < 0 } ∪ ( R 2 + × { 0 } ) . − s 3 Not a self-dual cone.

  68. Exponential cone 0 x 3 2 4 0.0 0.5 0.0 x 2 0.5 x 1 1.0 1.0 K exp

  69. Exponential cone Simple examples • Epigraph of negative logarithm: − log( x ) ≤ t ⇐ ⇒ ( x , 1 , − t ) ∈ K exp . • Epigraph of negative entropy: x log x ≤ t ⇐ ⇒ (1 , x , − t ) ∈ K exp . • Epigraph of Kullback-Leibler divergence (with variable p ): p i log p i � D ( p � q ) = ≤ t ⇐ ⇒ q i i � p i log p i ≤ p i log q i , p i log q i ≤ t i

  70. Exponential cone Simple examples • Epigraph of exponential: e x ≤ t ⇐ ⇒ ( t , 1 , x ) ∈ K exp . • Epigraph of log of sum of exponentials: � e a T i x + b i ≤ t ( z i , 1 , a T e T z = 1 . log ⇐ ⇒ i x + b i − t ) ∈ K exp , i

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend