computing zeta functions of groups and rings
play

Computing zeta functions of groups and rings Tobias Rossmann (joint - PowerPoint PPT Presentation

Computing zeta functions of groups and rings Tobias Rossmann (joint with Christopher Voll) Universitt Bielefeld Braunschweig, May 2013 Some counting problems Given a finitely generated nilpotent group G , let a n ( G ) = # H


  1. Computing zeta functions of groups and rings Tobias Rossmann (joint with Christopher Voll) Universität Bielefeld Braunschweig, May 2013

  2. Some counting problems • Given a finitely generated nilpotent group G , let � � a n ( G ) = # H � G : | G : H | = n . • Given a matrix algebra A � M d ( Z ) , let � � Λ : Λ is a submodule of Z d & | Z d : Λ | = n a n ( A ) = # . • Given an additively finitely generated ring L , let � � a n ( L ) = # Λ : Λ is a subring of L & | L : Λ | = n . • Many variations: normal subgroups of G , ideals of L , . . . Let Γ be one of the above and a n = a n ( Γ ) . Goal: compute ( a 1 , a 2 , . . . )

  3. Zeta functions a nm = a n a m for gcd ( n , m ) = 1 � Dirichlet generating functions Definition The (subgroup/submodule/subring/. . .) zeta function of Γ is ∞ � a n n − s . ζ Γ ( s ) = n = 1 Fact m � a n = O ( m α ) . ζ Γ ( s ) converges for Re ( s ) > α ⇐ ⇒ n = 1 Example ∞ � n − s , the Riemann zeta function. ζ Z ( s ) = n = 1

  4. Local zeta functions Definition The local zeta function of Γ at the prime p is ∞ � a p k p − ks . ζ Γ , p ( s ) = k = 0 Theorem (Grunewald, Segal & Smith 1988) � 1 ζ Γ ( s ) = ζ Γ , p ( s ) (“Euler product”) p prime 2 ζ Γ , p ( s ) ∈ Q ( p − s )

  5. Local zeta functions Theorem (Grunewald & du Sautoy 2000) Given Γ , there are Q -varieties V 1 , . . . , V m and W 1 , . . . , W m ∈ Q ( X , Y ) s.t. for almost all primes p, m � # V i ( F p ) · W i ( p , p − s ) . ζ Γ , p ( s ) = i = 1 Remark Key steps: 1 Express ζ Γ , p ( s ) as a p -adic integral. 2 Evaluate the integral using a resolution of singularities. Usually infeasible! Goal Develop practical methods for computing such V i and W i under non-degeneracy assumptions on Γ .

  6. This project Key ingredients 1 a new concept of non-degeneracy for a class of p -adic integrals 2 an effective method for evaluating non-degenerate integrals 3 a method that modifies the integrals in order to remove degeneracies (WIP) Inspiration 1 Khovanskii et al. (1970s): explicit resolution of singularities under non-degeneracy assumptions w.r.t. certain Newton polyhedra 2 Denef et al. (1980–): Igusa’s local zeta function enumerating solns of f ( x ) ≡ 0 mod p n 3 Gr¨ obner bases machinery, toric geometry

  7. Cone integrals Theorem (Grunewald & du Sautoy 2000) Let Γ have Hirsch length/dimension/additive rank d. Then there are polynomials f 1 . . . , f r over Q s.t. for almost all primes p, � ζ Γ , p ( s ) = ( 1 − p − 1 ) − d | x 11 | s − 1 · · · | x dd | s − d d µ ( x ) , p p V p where    x 11 · · · · · · x 1 d       .  ... �  .   x 22 .  � V p = x =  ∈ Tr d ( Z p ) � x 11 · · · x dd | f 1 ( x ) , . . . , f r ( x ) .   � . ...   � .   .        x dd

  8. Non-degenerate cone integrals Definition The Newton polytope New ( f ) of f = � a e X e : convex hull of { e : a e � = 0 } . Fact Faces τ ⊆ New ( f 1 · · · f r ) define canonical sub-polynomials f i , τ of the f i . � � Write f = ( f 1 , . . . , f r ) . For J ⊆ { 1, . . . , r } , write f J , τ = f j , τ j ∈ J . Definition f is non-degenerate (w.r.t. New ( f 1 · · · f r ) ) if ⇒ rk ( f ′ f J , τ ( x ) = 0 = J , τ ( x )) = # J for faces τ ⊆ New ( f 1 · · · f r ) , subsets J ⊆ { 1, . . . , r } and x ∈ ( C × ) n .

  9. Evaluating non-degenerate cone integrals Recall: given Γ , we obtain f = ( f 1 , . . . , f r ) s.t. ζ Γ , p is a cone integral involving f . Theorem (R. & Voll) Suppose f is non-degenerate. Then there are explicit W τ , J ∈ Q ( X , Y ) indexed by faces τ ⊆ New ( f 1 · · · f r ) and subsets J ⊆ { 1, . . . , r } s.t. � c τ , J ( p ) W τ , J ( p , p − s ) ζ Γ , p ( s ) = τ , J � � p ) n � for almost all p, where c τ , J ( p ) = # u ∈ ( F × � f j , τ ( u ) = 0 ⇐ ⇒ j ∈ J . � Heuristic observation Typical forms of degeneracy can be fixed using a “toric reduction process” (WIP) inspired by Gr¨ obner bases machinery.

  10. Examples We have � | a | s − 1 | x | s − 2 | z | s − 3 d µ ( a , . . . , z ) , ζ Z [ X ] / X 3 , p ( s ) = ( 1 − p − 1 ) − 3 V p where � � a � � � b c � � xz | aby − b 2 x − acx , abz , x 3 , bx 2 V p = ∈ Tr 3 ( Z p ) . . x y � � . . z Newton polytope = △ , 7 cases. Non-degenerate: � Result: ( 1 + p 1 − 2 s )( 1 + p − s + p 1 − 2 s + ( p 2 − p ) p − 3 s + ( p 3 − p 2 ) p − 4 s − p 3 − 5 s − p 4 − 6 s − p 4 − 7 s ) . ( 1 − p − s )( 1 − p 2 − 3 s ) 2 ( 1 − p 4 − 5 s ) Very similar: ζ sl 2 ( Z ) , p ( s ) du Sautoy & Taylor (2002): manual resn of singularities; 8 pages

  11. Examples Submodule ζ -functions for semisimple repns: L. Solomon et al. (1970s) • U 3 ( Z ) � Z 3 ≡ n 3 ( Z ) � Z 3 : ζ p ( s ) ζ p ( 2 s − 1 ) ζ p ( 3 s − 1 ) ζ p ( 4 s − 2 ) ζ p ( 4 s − 1 ) • Nilradical of the Borel subalgebra of sp 4 ( Z ) acting on Z 4 : ζ p ( s ) ζ p ( 2 s − 1 ) ζ p ( 3 s − 1 ) ζ p ( 4 s − 2 ) 2 ζ p ( 6 s − 3 ) ζ p ( 4 s − 1 ) ζ p ( 6 s − 2 ) • U 4 ( Z ) � Z 4 ≡ n 4 ( Z ) � Z 4 : 1 − p 1 − 4 s + · · · 35 terms · · · − p 10 − 30 s ( 1 − p − s )( 1 − p 1 − 2 s )( 1 − p 1 − 3 s )( 1 − p 1 − 4 s )( 1 − p 2 − 4 s )( 1 − p 2 − 5 s )( 1 − p 2 − 6 s )( 1 − p 3 − 7 s )( 1 − p 4 − 8 s ) • Can do: gl 2 ( Z ) (subrings), U 5 ( Z ) � Z 5 , Z [ X ] / X 4 , “commutative Heisenberg rings” of rank � 5, . . . many known examples

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend