computing real points on determinantal varieties and
play

Computing real points on determinantal varieties and spectrahedra - PowerPoint PPT Presentation

Computing real points on determinantal varieties and spectrahedra Didier Henrion 1 , 2 , 3 Simone Naldi 1 , 2 Mohab Safey El Din 4 1 LAAS - CNRS (Toulouse) 2 Universit e de Toulouse 3 Czech Technical University (Prague) 4 Equipe POLSYS -


  1. Computing real points on determinantal varieties and spectrahedra Didier Henrion 1 , 2 , 3 Simone Naldi 1 , 2 Mohab Safey El Din 4 1 LAAS - CNRS (Toulouse) 2 Universit´ e de Toulouse 3 Czech Technical University (Prague) 4 ´ Equipe POLSYS - Lip6 (Paris) Proj´ et GeoLMI: www.laas.fr/geolmi J N C F 2 0 1 4 Luminy — 4/11 0/13

  2. Linear matrices and Spectrahedra A linear matrix is a polynomial Examples matrix of degree 1:  x 11 . . . x 1 m  A( x ) = A 0 + x 1 A 1 + . . . + x n A n , � x 1 1 − x 3 � . . ... . .   . . x 2 1   with x = ( x 1 , . . . , x n ) . x m 1 . . . x mm Suppose that A i ∈ Q m × m . For A i = A T i , a linear matrix Lyapounov Stability is an LMI inequality is the positivity condition Solve in P A 0 + x 1 A 1 + . . . + x n A n � 0 P ≻ 0 d f dt = M · f → M T P + PM ≺ 0 where � 0 is positive semidefinite. The set S = { x ∈ R n : A ( x ) � 0 } is � 1 x 1 0 x 1 � 1 x 1 x 2 x 3 called a spectrahedron . Properties: � � x 1 1 x 2 0 x 1 1 x 1 x 2 0 x 2 1 x 3 x 2 x 1 1 x 1 ◮ convex basic semi-algebraic x 1 0 x 3 1 x 3 x 2 x 1 1 ◮ exposed faces ◮ over Fr ( S ) → det( A ) = 0 1/13

  3. Linear matrices and Spectrahedra A linear matrix is a polynomial Examples matrix of degree 1:  x 11 . . . x 1 m  A( x ) = A 0 + x 1 A 1 + . . . + x n A n , � x 1 1 − x 3 � . . ... . .   . . x 2 1   with x = ( x 1 , . . . , x n ) . x m 1 . . . x mm Suppose that A i ∈ Q m × m . For A i = A T i , a linear matrix Lyapounov Stability is an LMI inequality is the positivity condition Solve in P A 0 + x 1 A 1 + . . . + x n A n � 0 P ≻ 0 d f dt = M · f → M T P + PM ≺ 0 where � 0 is positive semidefinite. The set S = { x ∈ R n : A ( x ) � 0 } is called a spectrahedron . Properties: ◮ convex basic semi-algebraic ◮ exposed faces ◮ over Fr ( S ) → det( A ) = 0 1/13

  4. Linear matrices and Spectrahedra Define the complex determinantal variety � x ∈ C n � � D r = � rank A( x ) ≤ r for r ≤ m − 1 . � Theorem Henrion-N.-Safey � � Let A ( x ) be symmetric. Let r = min rank A( x ) | x ∈ S and C a connected component of D r ∩ R n such that C ∩ S � = ∅ . Then C ⊂ S . Remark: compute points in D r ∩ R n → points in S . Semidefinite Programming: min c 1 x 1 + . . . + c n x n � x ∈ R n | A( x ) � 0 � s . t . x ∈ S = The “probability” to be solution is positive for small-rank points. 2/13

  5. Problem statement Given X 2 ◮ m , n , r ∈ N , 0 ≤ r ≤ m − 1 ◮ A 0 , A 1 . . . A n ∈ Q m × m , let ◮ A( x ) = A 0 + x 1 A 1 + . . . + x n A n � x ∈ C n � � ◮ D r = � rank A( x ) ≤ r . � X 1 → D r is an algebraic set! Then Compute one point in each connected component of D r ∩ R n . * one point in each connected component = a good sample set * r = m − 1 : hypersurface det A = 0 * r = m − 1 , n = 1 : Real Eigenvalue Problem * n ≥ 2 : positive dimensional problem * first step for solving det A > 0 and det A ≥ 0 . 3/13

  6. State of the art Existence/computation of real roots ◮ F ( x 1 . . . x n ) = 0 , deg F = m : complexity m O ( n ) , hard in practice [ Basu, Pollack, Roy, Grigoriev, Vorobjov, Heintz, Solerno ]; ◮ Using polar varieties [ Bank, Giusti, Heintz, Mbakop, Pardo, Safey, Schost ]: ◮ O ( m 3n ) : regular case ◮ O ( m 4n ) : singular case. ◮ Gr¨ obner Bases = to compute solutions to poly. equations [ FGb,RAGlib ] ◮ Quadratic case. Complexity: poly. in n , expon. in the codimension Determinantal structure ◮ Extensively studied in Algebraic Geometry ◮ Finite (0-dimensional) case: Gr¨ obner Bases methods ❀ complexity bounds [ Faug` ere, Safey, Spaenlehauer ] 4/13

  7. Positive dimensional singular varieties How to avoid singularities? Input : P 1 = . . . = P a = 0 A system Q 1 = . . . = Q b = 0 − → V ( P 1 , . . . , P a ) possibly singular V ( Q 1 , . . . , Q b ) good properties How to reduce the dimension? A system R 1 = . . . = R c = 0 − → dim V ( Q 1 , . . . , Q b ) > 0 V ( R 1 , . . . , R c ) is finite and such that C ⊂ ( V ( P 1 , . . . , P a ) ∩ R n ) − → C ∩ ( V ( R 1 , . . . , R c ) ∩ R n ) � = ∅ 5/13

  8. Removing singularities Room − Kempf desingularization : we build the bi-linear system Q . . .  y 1 , 1 y 1 , m − r  . . A( x ) · Y = A( x ) · . .  = 0 .   . .  y m , 1 . . . y m , m − r 1 . . . 0   . . ... U · Y = . .   . .   0 . . . 1 where U has full rank. It defines a set V r = V ( Q ) ⊂ C n + m ( m − r ) . ◮ rank A( x ) ≤ r ⇐ ⇒ dim(ker A( x )) ≥ m − r . � Y � = ker A( x ) . ◮ Π x ( V r ) ⊂ D r ◮ Real points in V r : ( x , y ) ∈ V r ∩ R n + m ( m − r ) → x ∈ D r ∩ R n Theorem: generic smoothness and equidimensionality of V r = V ( Q ) . → for generic linear matrices A , the set V r has no singular points. 6/13

  9. Compute critical points Consider the projection map Π a ( x , y ) = a 1 x 1 + . . . + a n x n . Critical points → solutions to the multi-linear Lagrange system R : � jac X Q ( x , y ) � jac Y Q ( x , y ) z ′ Q ( x , y ) = 0 = 0 . a 1 , . . . , a n 0 · · · 0 where a = [ a 1 , . . . , a n ] T ∈ R n . ◮ R = Critical points of Π a ( x , y ) = a 1 x 1 + . . . + a n x n on V r ◮ z = Lagrange multipliers ◮ ( x , y ) critical for Π a ⇐ ⇒ ∃ z : ( x , y , z ) is a solution ◮ # polynomials = # variables Theorem: generically w.r.t. { A i , a } the solution set is finite. → for generic projections, finite number of critical points. 7/13

  10. Projections on generic lines Degenerate situations Projecting { xy − 1 = 0 } on y = 0 y y one obtains an open set and no critical points for this map. x x change of variables two critical points ( x 2 , y ) ( x 2 , y ) C C π 1 π 1 π 1 π − 1 π − 1 1 1 x 1 x 1 Theorem: generic closedness of projections − → after a change of x − variables, only these two cases can hold. 8/13

  11. Output and complexity The algorithms produces a zero-dimensional ideal � f � = � f 1 . . . f N � . Define: δ := max t =1 ... N deg � f 1 . . . f t � Data representation Rational Parametrization ( p , p 0 , p 1 , . . . , p n ) : x 1 = p 1 ( t ) p 0 ( t ) , . . . , x n = p n ( t ) p 0 ( t ) , p ( t ) = 0 . Complexity model: [ Giusti, Lecerf, Salvy , 2001, Geometric Resolution] the arithmetic complexity is essentially quadratic on δ. ezout bounds − → δ exponential in m , n !!! B´ → Multi-linear B´ ezout bounds Multi-linear structure − 9/13

  12. Output and complexity Complexity analysis Henrion-N.-Safey The number of arithmetic operations over Q needed to compute one point per connected component of D r with parameters ( m , n , r ) is in: ◮ generic linear matrices � 6 � � � n + m ( m − r ) O Poly ( m , n , r ) · n ◮ symmetric linear matrices � 6 � � � n + ( m + r +1)( m − r ) O Poly ( m , n , r ) · 2 n ◮ Hankel/Toeplitz linear matrices � 6 � � � n + 2 m − r − 1 O Poly ( m , n , r ) · n 10/13

  13. An algorithm for spectrahedra Input A 0 , A 1 , . . . , A n symmetric matrices. Output ◮ [ ] if S = ∅ ◮ a RP ( p , p 0 , p 1 , . . . , p n ) ∈ Q [ t ] , the min-rank r Procedure For r from 1 to m − 1 do ◮ apply Algorithm to (A( x ) , r ) ; ◮ for all x ∈ V ( p ( t ) , x i − p i ( t ) / p 0 ( t )) test whether x ∈ S ; ◮ if yes, return ( p , p 0 , p 1 , . . . , p n , r ) . 11/13

  14. Timings Table: m − r = 1 10 Algorithm m n RAGlib 8 RealDeterminant RAGlib 2 4 0.22 s 2.25 s 6 log (time) 4 2 10 0.63 s 25.6 s 2 2 20 1.99 s 4065 s 0 3 3 0.49 s 2.8 s −2 −4 3 20 10.5 s ≃ 7 h 0 2 4 6 8 10 12 14 16 18 20 n : number of variables 4 2 0.35 s 0.35 s Figure: ( k , r ) = (3 , 2) 4 4 110 s 835 s 4 16 4736 s ∞ 10 4 20 7420 s ∞ 8 RealDeterminant 6 RAGlib Table: m − r = 2 log (time) 4 m n time (s) 2 0 3 2 0.23 s −2 0 2 4 6 8 10 12 14 16 18 20 3 8 10.3 s n : number of variables 3 12 175 s Figure: ( k , r ) = (4 , 3) 4 4 503 s 4 5 716 s First implementation under Maple . 5 2 3 s We use FGb for Grobner bases 5 3 7 s computations 12/13

  15. Number of complex solutions A 0 , A 1 , . . . , A n are random or random-symmetric m n r generic symm. m n r generic symm. 2 2 1 4 4 3 9 2 39 26 2 3 1 6 5 3 15 2 39 26 2 4 1 6 5 3 20 2 39 26 2 8 1 6 5 4 3 3 52 42 2 20 1 6 5 4 4 3 120 80 3 3 2 21 17 4 6 3 264 152 3 4 2 33 23 4 7 3 284 162 3 5 2 39 26 4 10 3 284 162 3 6 2 39 26 4 20 3 284 162 min { n , m 2 − r 2 } r ( m − r ) � m ( m − r ) N − 1 �� r ( m − r ) �� � � � generic ≤ N − ( m − r ) 2 − ℓ N − ℓ ℓ N =( m − r ) 2 ℓ =0 min { n , c + r ( m − r ) } r ( m − r ) c n − 1 �� r ( m − r ) � �� � � � symmetric ≤ n − c + r ( m − r ) − ℓ n − ℓ ℓ N = c − r ( m − r ) ℓ =0 with c = ( m − r )( m + r + 1) 2 13/13

  16. Thank you 13/13

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend