computing gr obner bases a short overview
play

Computing Gr obner Bases a short overview Christian Eder, - PowerPoint PPT Presentation

Computing Gr obner Bases a short overview Christian Eder, Jean-Charles Faug` ere, Fayssal Martani, John Perry and Bjarke Hammersholt Roune Seminar of the CARAMEL Team in Nancy, France September 11, 2014 1 / 57 Preliminaries


  1. Gebauer-M¨ oller installation [32] We add a new element h to G and generate new pairs P ′ := { ( f , h ) | f ∈ G } . We update the pairs in 4 steps: 11 / 57

  2. Gebauer-M¨ oller installation [32] We add a new element h to G and generate new pairs P ′ := { ( f , h ) | f ∈ G } . We update the pairs in 4 steps: 1. If ( f , g ) ∈ P s.t. ⊲ lt ( h ) | lcm ( lt ( f ) , lt ( g )) , ⊲ lcm ( lt ( f ) , lt ( h )) � = lcm ( lt ( f ) , lt ( g )) , ⊲ lcm ( lt ( g ) , lt ( h )) � = lcm ( lt ( f ) , lt ( g )) = ⇒ Remove ( f , g ) from P . [ P done] 11 / 57

  3. Gebauer-M¨ oller installation [32] We add a new element h to G and generate new pairs P ′ := { ( f , h ) | f ∈ G } . We update the pairs in 4 steps: 1. If ( f , g ) ∈ P s.t. ⊲ lt ( h ) | lcm ( lt ( f ) , lt ( g )) , ⊲ lcm ( lt ( f ) , lt ( h )) � = lcm ( lt ( f ) , lt ( g )) , ⊲ lcm ( lt ( g ) , lt ( h )) � = lcm ( lt ( f ) , lt ( g )) = ⇒ Remove ( f , g ) from P . [ P done] 2. Fix ( f , h ) ∈ P ′ . If ( g , h ) ∈ P ′ \{ ( f , h ) } s.t. ⊲ ∃ λ > 1 and lcm ( lt ( f ) , lt ( h )) = λ lcm ( lt ( g ) , lt ( h )) ⇒ Remove ( g , h ) from P ′ . = 11 / 57

  4. Gebauer-M¨ oller installation [32] We add a new element h to G and generate new pairs P ′ := { ( f , h ) | f ∈ G } . We update the pairs in 4 steps: 1. If ( f , g ) ∈ P s.t. ⊲ lt ( h ) | lcm ( lt ( f ) , lt ( g )) , ⊲ lcm ( lt ( f ) , lt ( h )) � = lcm ( lt ( f ) , lt ( g )) , ⊲ lcm ( lt ( g ) , lt ( h )) � = lcm ( lt ( f ) , lt ( g )) = ⇒ Remove ( f , g ) from P . [ P done] 2. Fix ( f , h ) ∈ P ′ . If ( g , h ) ∈ P ′ \{ ( f , h ) } s.t. ⊲ ∃ λ > 1 and lcm ( lt ( f ) , lt ( h )) = λ lcm ( lt ( g ) , lt ( h )) ⇒ Remove ( g , h ) from P ′ . = 3. Fix ( f , h ) ∈ P ′ . If ( g , h ) ∈ P ′ \{ ( f , h ) } s.t. ⊲ lcm ( lt ( f ) , lt ( h )) = lcm ( lt ( g ) , lt ( h )) ⇒ Remove ( g , h ) from P ′ . [Chain criterion done] = 11 / 57

  5. Gebauer-M¨ oller installation [32] We add a new element h to G and generate new pairs P ′ := { ( f , h ) | f ∈ G } . We update the pairs in 4 steps: 1. If ( f , g ) ∈ P s.t. ⊲ lt ( h ) | lcm ( lt ( f ) , lt ( g )) , ⊲ lcm ( lt ( f ) , lt ( h )) � = lcm ( lt ( f ) , lt ( g )) , ⊲ lcm ( lt ( g ) , lt ( h )) � = lcm ( lt ( f ) , lt ( g )) = ⇒ Remove ( f , g ) from P . [ P done] 2. Fix ( f , h ) ∈ P ′ . If ( g , h ) ∈ P ′ \{ ( f , h ) } s.t. ⊲ ∃ λ > 1 and lcm ( lt ( f ) , lt ( h )) = λ lcm ( lt ( g ) , lt ( h )) ⇒ Remove ( g , h ) from P ′ . = 3. Fix ( f , h ) ∈ P ′ . If ( g , h ) ∈ P ′ \{ ( f , h ) } s.t. ⊲ lcm ( lt ( f ) , lt ( h )) = lcm ( lt ( g ) , lt ( h )) ⇒ Remove ( g , h ) from P ′ . [Chain criterion done] = 4. If ( f , h ) ∈ P ′ s.t. lcm ( lt ( f ) , lt ( h )) = lt ( f ) lt ( h ) ⇒ Remove ( f , h ) from P ′ . [Product criterion done] = 11 / 57

  6. Can we do even better? In our example we still need to consider G spol ( g 3 , g 1 ) − → 0 . 12 / 57

  7. Can we do even better? In our example we still need to consider G spol ( g 3 , g 1 ) − → 0 . How to get rid of this useless computation? 12 / 57

  8. Can we do even better? In our example we still need to consider G spol ( g 3 , g 1 ) − → 0 . How to get rid of this useless computation? Use more structure of I = ⇒ Signatures 12 / 57

  9. Signatures Let I = � f 1 ,..., f m � ⊂ R . Idea : Give each f ∈ I a bit more structure: 13 / 57

  10. Signatures Let I = � f 1 ,..., f m � ⊂ R . Idea : Give each f ∈ I a bit more structure: 1. Let R m be generated by e 1 ,..., e m and let ≺ be a compatible monomial order on the monomials of R m . 13 / 57

  11. Signatures Let I = � f 1 ,..., f m � ⊂ R . Idea : Give each f ∈ I a bit more structure: 1. Let R m be generated by e 1 ,..., e m and let ≺ be a compatible monomial order on the monomials of R m . 2. Let α �→ α : R m → R such that e i = f i for all i . 13 / 57

  12. Signatures Let I = � f 1 ,..., f m � ⊂ R . Idea : Give each f ∈ I a bit more structure: 1. Let R m be generated by e 1 ,..., e m and let ≺ be a compatible monomial order on the monomials of R m . 2. Let α �→ α : R m → R such that e i = f i for all i . 3. Each f ∈ I can be represented via some α ∈ R m : f = α 13 / 57

  13. Signatures Let I = � f 1 ,..., f m � ⊂ R . Idea : Give each f ∈ I a bit more structure: 1. Let R m be generated by e 1 ,..., e m and let ≺ be a compatible monomial order on the monomials of R m . 2. Let α �→ α : R m → R such that e i = f i for all i . 3. Each f ∈ I can be represented via some α ∈ R m : f = α 4. A signature of f is given by s ( f ) = lt ≺ ( α ) where f = α . 13 / 57

  14. Signatures Let I = � f 1 ,..., f m � ⊂ R . Idea : Give each f ∈ I a bit more structure: 1. Let R m be generated by e 1 ,..., e m and let ≺ be a compatible monomial order on the monomials of R m . 2. Let α �→ α : R m → R such that e i = f i for all i . 3. Each f ∈ I can be represented via some α ∈ R m : f = α 4. A signature of f is given by s ( f ) = lt ≺ ( α ) where f = α . 5. An element α ∈ R m such that α = 0 is called a syzygy . 13 / 57

  15. Our example again – with signatures and ≺ pot g 1 = xy − z 2 , s ( g 1 ) = e 1 , g 2 = y 2 − z 2 , s ( g 2 ) = e 2 . 14 / 57

  16. Our example again – with signatures and ≺ pot g 1 = xy − z 2 , s ( g 1 ) = e 1 , g 2 = y 2 − z 2 , s ( g 2 ) = e 2 . g 3 = spol ( g 2 , g 1 ) = xg 2 − yg 1 ⇒ s ( g 3 ) = x s ( g 2 ) = xe 2 . 14 / 57

  17. Our example again – with signatures and ≺ pot g 1 = xy − z 2 , s ( g 1 ) = e 1 , g 2 = y 2 − z 2 , s ( g 2 ) = e 2 . g 3 = spol ( g 2 , g 1 ) = xg 2 − yg 1 ⇒ s ( g 3 ) = x s ( g 2 ) = xe 2 . spol ( g 3 , g 1 ) = yg 3 − z 2 g 1 ⇒ s ( spol ( g 3 , g 1 )) = y s ( g 3 ) = xye 2 . 14 / 57

  18. Our example again – with signatures and ≺ pot g 1 = xy − z 2 , s ( g 1 ) = e 1 , g 2 = y 2 − z 2 , s ( g 2 ) = e 2 . g 3 = spol ( g 2 , g 1 ) = xg 2 − yg 1 ⇒ s ( g 3 ) = x s ( g 2 ) = xe 2 . spol ( g 3 , g 1 ) = yg 3 − z 2 g 1 ⇒ s ( spol ( g 3 , g 1 )) = y s ( g 3 ) = xye 2 . Note that s ( spol ( g 3 , g 1 )) = xye 2 and lm ( g 1 ) = xy . 14 / 57

  19. Think in the module α ∈ R m = ⇒ polynomial α with lt ( α ) , signature s ( α ) = lt ( α ) 15 / 57

  20. Think in the module α ∈ R m = ⇒ polynomial α with lt ( α ) , signature s ( α ) = lt ( α ) S-pairs/S-polynomials: � � α , β = a α − b β = ⇒ spair ( α , β ) = a α − b β spol 15 / 57

  21. Think in the module α ∈ R m = ⇒ polynomial α with lt ( α ) , signature s ( α ) = lt ( α ) S-pairs/S-polynomials: � � α , β = a α − b β = ⇒ spair ( α , β ) = a α − b β spol s -reductions: γ − d δ = ⇒ γ − d δ 15 / 57

  22. Think in the module α ∈ R m = ⇒ polynomial α with lt ( α ) , signature s ( α ) = lt ( α ) S-pairs/S-polynomials: � � α , β = a α − b β = ⇒ spair ( α , β ) = a α − b β spol s -reductions: γ − d δ = ⇒ γ − d δ Remark In the following we need one detail from signature-based Gr¨ obner Ba- sis computations: We pick from P by increasing signature. 15 / 57

  23. Signature-based criteria s ( α ) = s ( β ) = ⇒ Compute 1, remove 1. 16 / 57

  24. Signature-based criteria s ( α ) = s ( β ) = ⇒ Compute 1, remove 1. Sketch of proof 1. s ( α − β ) ≺ s ( α ) , s ( β ) . 2. All S-pairs are handled by increasing signature. ⇒ All relatons ≺ s ( α ) are known: α = β + elements of smaller signature 16 / 57

  25. Signature-based criteria S-pairs in signature T 17 / 57

  26. Signature-based criteria S-pairs in signature T What are all possible configurations to reach signature T ? 17 / 57

  27. Signature-based criteria S-pairs in signature T � � R T = a α | α handled by the algorithm and s ( a α ) = T What are all possible configurations to reach signature T ? 17 / 57

  28. Signature-based criteria S-pairs in signature T � � R T = a α | α handled by the algorithm and s ( a α ) = T What are all possible Define an order on R T configurations to reach and choose the maximal signature T ? element. 17 / 57

  29. Special cases � � R T = a α | α handled by the algorithm and s ( a α ) = T 18 / 57

  30. Special cases � � R T = a α | α handled by the algorithm and s ( a α ) = T Choose b β to be an element of R T maximal w.r.t. an order � . 18 / 57

  31. Special cases � � R T = a α | α handled by the algorithm and s ( a α ) = T Choose b β to be an element of R T maximal w.r.t. an order � . 1 . If b β is a syzygy = ⇒ Go on to next signature. 18 / 57

  32. Special cases � � R T = a α | α handled by the algorithm and s ( a α ) = T Choose b β to be an element of R T maximal w.r.t. an order � . 1 . If b β is a syzygy = ⇒ Go on to next signature. 2 . If b β is not part of an S-pair = ⇒ Go on to next signature. 18 / 57

  33. Special cases � � R T = a α | α handled by the algorithm and s ( a α ) = T Choose b β to be an element of R T maximal w.r.t. an order � . 1 . If b β is a syzygy = ⇒ Go on to next signature. 2 . If b β is not part of an S-pair = ⇒ Go on to next signature. Revisiting our example with ≺ pot s ( spol ( g 3 , g 1 )) = xye 2 � g 1 = xy − z 2 ⇒ psyz ( g 2 , g 1 ) = g 1 e 2 − g 2 e 1 = xye 2 + ... g 2 = y 2 − z 2 18 / 57

  34. Modifications not specific to signature-based Gr¨ obner ba- involutive bases sis algorithms [33, 34] TRB (2013) [35] F5GEN (2010) [37, 38] quasi- (2013) homogeneous case Extended GBGC [20] F5 Criteria [41] [4] (2013) (2011) (2010) SSG bihomogeneous F5” [25] case [17] (2012) SBA [19] (2002) (2010) [16] (2013) AP SB [2] [39] MatrixF5 (2009) (2012) [18] (2003) GVW(v1) GVW(HS) F4/5 F5 [27] [28, 43] [1] (2010) (2011) [17] (2010) on (2002) solvable alge- SAGBI Gr¨ obner bras bases [42] iG2V globally [24] G2V (2012) [10] invariant (2009) [26] (group (2012) (2010) action) [22] (2012) iF5A F5t F5A iF5C F5’ [10] [30, 31] [15] [10] F5B (2012) [17] (2009) (2011) (2012) [3] (2002) F5/2 (2005) [18] invariant (2003) (group F5R F5C action) [40] [23] [14] F5+ (2009) (2013) (2005) [13] (2011) Variants covered by the survey 19 / 57

  35. # zero reductions (Singular-4-0-0, F 32003 ) SBA ≺ pot SBA ≺ d-pot SBA ≺ lt Benchmark STD cyclic-8 4,284 243 243 671 cyclic-8-h 5,843 243 243 671 eco-11 3,476 0 749 749 eco-11-h 5,429 502 502 749 katsura-11 3,933 0 0 348 katsura-11-h 3,933 0 0 348 noon-9 25,508 0 0 682 noon-9-h 25,508 0 0 682 Random ( 11 , 2 , 2 ) 6,292 0 0 590 HRandom ( 11 , 2 , 2 ) 6,292 0 0 590 Random ( 12 , 2 , 2 ) 13,576 0 0 1,083 HRandom ( 12 , 2 , 2 ) 13,576 0 0 1,083 20 / 57

  36. Time in seconds (Singular-4-0-0, F 32003 ) SBA ≺ pot SBA ≺ d-pot SBA ≺ lt Benchmark STD cyclic-8 32.480 44.310 100.780 38.120 cyclic-8-h 38.300 35.770 98.440 32.640 eco-11 28.450 3.450 27.360 13.270 eco-11-h 20.630 11.600 14.840 7.960 katsura-11 54.780 35.720 31.010 11.790 katsura-11-h 51.260 34.080 32.590 17.230 noon-9 29.730 12.940 14.620 15.220 noon-9-h 34.410 17.850 20.090 20.510 Random ( 11 , 2 , 2 ) 267.810 77.430 130.400 28.640 HRandom ( 11 , 2 , 2 ) 22.970 14.060 39.320 3.540 Random ( 12 , 2 , 2 ) 2,069.890 537.340 1,062.390 176.920 HRandom ( 12 , 2 , 2 ) 172.910 112.420 331.680 22.060 21 / 57

  37. Can we combine both attempts? Buchberger’s Product and Chain criterion can be combined with the Rewrite criterion [29, 33, 11]: 22 / 57

  38. Can we combine both attempts? Buchberger’s Product and Chain criterion can be combined with the Rewrite criterion [29, 33, 11]: Chain criterion is a special case of the Rewrite criterion ⇒ already included. 22 / 57

  39. Can we combine both attempts? Buchberger’s Product and Chain criterion can be combined with the Rewrite criterion [29, 33, 11]: Chain criterion is a special case of the Rewrite criterion ⇒ already included. Product criterion is not always (but mostly) included. 22 / 57

  40. Can we combine both attempts? Buchberger’s Product and Chain criterion can be combined with the Rewrite criterion [29, 33, 11]: Chain criterion is a special case of the Rewrite criterion ⇒ already included. Product criterion is not always (but mostly) included. α added to G � Generate all possible principal syzygies with α . (e.g. GVW ) 22 / 57

  41. Can we combine both attempts? Buchberger’s Product and Chain criterion can be combined with the Rewrite criterion [29, 33, 11]: Chain criterion is a special case of the Rewrite criterion ⇒ already included. Product criterion is not always (but mostly) included. α added to G S-pair fulfilling Product criterion � not detected by Rewrite criterion Generate all possible � principal syzygies with α . Add one corresponding syzygy. (e.g. SBA in Singular ) (e.g. GVW ) 22 / 57

  42. Experimental results Implementation done in Singular [9] SBA ≺ pot SBA ≺ lt STD Benchmark ZR ZR ZR ZR / PC cyclic-8 4284 243 671 671 / 0 cyclic-8-h 5843 243 671 671 / 0 eco-11 3476 0 749 749 / 0 eco-11-h 5429 502 749 718 / 0 katsura-11 3933 0 348 304 / 0 katsura-11-h 3933 0 348 304 / 0 noon-9 25508 0 682 646 / 0 noon-9-h 25508 0 682 646 / 0 binomial-6-2 21 6 15 8 / 7 binomial-6-3 20 13 15 9 / 6 binomial-7-3 27 24 21 21 / 0 binomial-7-4 41 16 19 16 / 3 binomial-8-3 53 23 27 27 / 0 binomial-8-4 40 31 26 26 / 0 23 / 57

  43. And what’s about SBA using ≺ pot ? Conjecture [11] Every S-polynomial fulfilling the Product criterion is also detected by the Rewrite criterion in SBA using ≺ pot . 24 / 57

  44. And what’s about SBA using ≺ pot ? Conjecture [11] Every S-polynomial fulfilling the Product criterion is also detected by the Rewrite criterion in SBA using ≺ pot . ◮ We checked several million examples, all fulfilling the conjecture. ◮ Until now we cannot prove this. 24 / 57

  45. And what’s about SBA using ≺ pot ? Conjecture [11] Every S-polynomial fulfilling the Product criterion is also detected by the Rewrite criterion in SBA using ≺ pot . ◮ We checked several million examples, all fulfilling the conjecture. ◮ Until now we cannot prove this. Ongoing work: 1. Describe in detail the connection between our conjecture and Moreno-Soc´ ıas conjecture [36]. 2. Try to exploit even more algebraic structures for predicting zero reductions. 24 / 57

  46. Predicting zero reductions 1 2 Fast linear algebra for computing Gr¨ obner bases 25 / 57

  47. Buchberger’s algorithm - revisited Input: Ideal I = � f 1 ,..., f m � Output: Gr¨ obner basis G for I 1. G ← / 0 2. G ← G ∪{ f i } for all i ∈ { 1 ,..., m } 3. Set P ← { spol ( f i , f j ) | f i , f j ∈ G , i > j } 4. Choose p ∈ P , P ← P \{ p } G (a) If p − → 0 ◮ ◮ no new information Go on with the next element in P . G − → q � = 0 ◮ (b) If p ◮ new information Build new S-pair with q and add them to P . Add q to G . Go on with the next element in P . 5. When P = / 0 we are done and G is a Gr¨ obner basis for I . 26 / 57

  48. Faug` ere’s F4 algorithm Input: Ideal I = � f 1 ,..., f m � Output: Gr¨ obner basis G for I 1. G ← / 0 2. G ← G ∪{ f i } for all i ∈ { 1 ,..., m } 3. Set P ← { ( af , bg ) | f , g ∈ G } 4. d ← 0 5. while P � = / 0 : 27 / 57

  49. Faug` ere’s F4 algorithm Input: Ideal I = � f 1 ,..., f m � Output: Gr¨ obner basis G for I 1. G ← / 0 2. G ← G ∪{ f i } for all i ∈ { 1 ,..., m } 3. Set P ← { ( af , bg ) | f , g ∈ G } 4. d ← 0 5. while P � = / 0 : (a) d ← d + 1 (b) P d ← Select ( P ) , P ← P \ P d (c) L d ← { af , bg | ( af , bg ) ∈ P d } (d) L d ← Symbolic Preprocessing ( L d , G ) (e) F d ← Reduction ( L d , G ) (f) for h ∈ F d : ◮ If lt ( h ) / ∈ L ( G ) (all other h are “useless”): ⊲ P ← P ∪{ new pairs with h } ⊲ G ← G ∪{ h } 6. Return G 27 / 57

  50. Differences to Buchberger 1. Select a subset P d of P , not only one element. 2. Do a symbolic preprocessing: Search and store reducers, but do not reduce. 3. Do a full reduction of P d at once: Reduce a subset of R by a subset of R 28 / 57

  51. Differences to Buchberger 1. Select a subset P d of P , not only one element. 2. Do a symbolic preprocessing: Search and store reducers, but do not reduce. 3. Do a full reduction of P d at once: Reduce a subset of R by a subset of R If Select ( P ) selects only 1 pair F4 is just Buchberger’s algorithm. Usually one chooses the normal selection strategy, i.e. all pairs of lowest degree. 28 / 57

  52. Symbolic preprocessing Input: L , G finite subsets of R Output: a finite subset of R 1. F ← L 2. D ← L ( F ) (S-pairs already reduce lead terms) 3. while T ( F ) � = D : (a) Choose m ∈ T ( F ) \ D , D ← D ∪{ m } . (b) If m ∈ L ( G ) ⇒ ∃ g ∈ G and λ ∈ R such that λ lt ( g ) = m ⊲ F ← F ∪{ λ g } 4. Return F 29 / 57

  53. Symbolic preprocessing Input: L , G finite subsets of R Output: a finite subset of R 1. F ← L 2. D ← L ( F ) (S-pairs already reduce lead terms) 3. while T ( F ) � = D : (a) Choose m ∈ T ( F ) \ D , D ← D ∪{ m } . (b) If m ∈ L ( G ) ⇒ ∃ g ∈ G and λ ∈ R such that λ lt ( g ) = m ⊲ F ← F ∪{ λ g } 4. Return F We optimize this soon! 29 / 57

  54. Reduction Input: L , G finite subsets of R Output: a finite subset of R 1. M ← Macaulay matrix of L 2. M ← Gaussian Elimination of M (Linear algebra) 3. F ← polynomials from rows of M 4. Return F 30 / 57

  55. Reduction Input: L , G finite subsets of R Output: a finite subset of R 1. M ← Macaulay matrix of L 2. M ← Gaussian Elimination of M (Linear algebra) 3. F ← polynomials from rows of M 4. Return F Macaulay matrix columns = ˆ monomials (sorted by monomial order < ) = ˆ rows coeffs of polynomials in L 30 / 57

  56. Example: Cyclic-4 R = Q [ a , b , c , d ] , < denotes DRL and we use the normal selection strategy for Select ( P ) . I = � f 1 ,..., f 4 � , where f 1 = abcd − 1 , f 2 = abc + abd + acd + bcd , f 3 = ab + bc + ad + cd , f 4 = a + b + c + d . 31 / 57

  57. Example: Cyclic-4 R = Q [ a , b , c , d ] , < denotes DRL and we use the normal selection strategy for Select ( P ) . I = � f 1 ,..., f 4 � , where f 1 = abcd − 1 , f 2 = abc + abd + acd + bcd , f 3 = ab + bc + ad + cd , f 4 = a + b + c + d . We start with G = { f 4 } and P 1 = { ( f 3 , bf 4 ) } , thus L 1 = { f 3 , bf 4 } . 31 / 57

  58. Example: Cyclic-4 R = Q [ a , b , c , d ] , < denotes DRL and we use the normal selection strategy for Select ( P ) . I = � f 1 ,..., f 4 � , where f 1 = abcd − 1 , f 2 = abc + abd + acd + bcd , f 3 = ab + bc + ad + cd , f 4 = a + b + c + d . We start with G = { f 4 } and P 1 = { ( f 3 , bf 4 ) } , thus L 1 = { f 3 , bf 4 } . Let us do symbolic preprocessing: { ab , b 2 , bc , ad , bd , cd T ( L 1 ) = } = { f 3 , bf 4 } L 1 31 / 57

  59. Example: Cyclic-4 R = Q [ a , b , c , d ] , < denotes DRL and we use the normal selection strategy for Select ( P ) . I = � f 1 ,..., f 4 � , where f 1 = abcd − 1 , f 2 = abc + abd + acd + bcd , f 3 = ab + bc + ad + cd , f 4 = a + b + c + d . We start with G = { f 4 } and P 1 = { ( f 3 , bf 4 ) } , thus L 1 = { f 3 , bf 4 } . Let us do symbolic preprocessing: { ab , b 2 , bc , ad , bd , cd T ( L 1 ) = } = { f 3 , bf 4 } L 1 b 2 / ∈ L ( G ) , 31 / 57

  60. Example: Cyclic-4 R = Q [ a , b , c , d ] , < denotes DRL and we use the normal selection strategy for Select ( P ) . I = � f 1 ,..., f 4 � , where f 1 = abcd − 1 , f 2 = abc + abd + acd + bcd , f 3 = ab + bc + ad + cd , f 4 = a + b + c + d . We start with G = { f 4 } and P 1 = { ( f 3 , bf 4 ) } , thus L 1 = { f 3 , bf 4 } . Let us do symbolic preprocessing: { ab , b 2 , bc , ad , bd , cd T ( L 1 ) = } = { f 3 , bf 4 } L 1 b 2 / ∈ L ( G ) , bc / ∈ L ( G ) , 31 / 57

  61. Example: Cyclic-4 R = Q [ a , b , c , d ] , < denotes DRL and we use the normal selection strategy for Select ( P ) . I = � f 1 ,..., f 4 � , where f 1 = abcd − 1 , f 2 = abc + abd + acd + bcd , f 3 = ab + bc + ad + cd , f 4 = a + b + c + d . We start with G = { f 4 } and P 1 = { ( f 3 , bf 4 ) } , thus L 1 = { f 3 , bf 4 } . Let us do symbolic preprocessing: { ab , b 2 , bc , ad , bd , cd , d 2 } T ( L 1 ) = = { f 3 , bf 4 , df 4 } L 1 b 2 / ∈ L ( G ) , bc / ∈ L ( G ) , d lt ( f 4 ) = ad , 31 / 57

  62. Example: Cyclic-4 R = Q [ a , b , c , d ] , < denotes DRL and we use the normal selection strategy for Select ( P ) . I = � f 1 ,..., f 4 � , where f 1 = abcd − 1 , f 2 = abc + abd + acd + bcd , f 3 = ab + bc + ad + cd , f 4 = a + b + c + d . We start with G = { f 4 } and P 1 = { ( f 3 , bf 4 ) } , thus L 1 = { f 3 , bf 4 } . Let us do symbolic preprocessing: { ab , b 2 , bc , ad , bd , cd , d 2 } T ( L 1 ) = = { f 3 , bf 4 , df 4 } L 1 b 2 / ∈ L ( G ) , bc / ∈ L ( G ) , d lt ( f 4 ) = ad , all others also / ∈ L ( G ) , 31 / 57

  63. Example: Cyclic-4 Now reduction: Convert polynomial data L 1 to Macaulay Matrix M 1 b 2 d 2 ab bc ad bd cd   0 0 0 1 1 1 1 df 4   f 3 1 0 1 1 0 1 0     bf 4 1 1 1 0 1 0 0 32 / 57

  64. Example: Cyclic-4 Now reduction: Convert polynomial data L 1 to Macaulay Matrix M 1 b 2 d 2 ab bc ad bd cd   0 0 0 1 1 1 1 df 4   f 3 1 0 1 1 0 1 0     bf 4 1 1 1 0 1 0 0 Gaussian Elimination of M 1 : b 2 d 2 ab bc ad bd cd   df 4 0 0 0 1 1 1 1     − 1 − 1 f 3 1 0 1 0 0     bf 4 0 1 0 0 2 0 1 32 / 57

  65. Example: Cyclic-4 Convert matrix data back to polynomial structure F 1 : b 2 d 2 ab bc ad bd cd   0 0 0 1 1 1 1 df 4     f 3 1 0 1 0 − 1 0 − 1     bf 4 0 1 0 0 2 0 1     , b 2 + 2 bd + d 2  ad + bd + cd + d 2 , ab + bc − bd − d 2 F 1 = � �� � � �� � � �� �  f 5 f 6 f 7 33 / 57

  66. Example: Cyclic-4 Convert matrix data back to polynomial structure F 1 : b 2 d 2 ab bc ad bd cd   0 0 0 1 1 1 1 df 4     f 3 1 0 1 0 − 1 0 − 1     bf 4 0 1 0 0 2 0 1     , b 2 + 2 bd + d 2  ad + bd + cd + d 2 , ab + bc − bd − d 2 F 1 = � �� � � �� � � �� �  f 5 f 6 f 7 lt ( f 5 ) , lt ( f 6 ) ∈ L ( G ) , so G ← G ∪{ f 7 } . 33 / 57

  67. Example: Cyclic-4 Next round: G = { f 4 , f 7 } , P 2 = { ( f 2 , bcf 4 ) } , L 2 = { f 2 , bcf 4 } . 34 / 57

  68. Example: Cyclic-4 Next round: G = { f 4 , f 7 } , P 2 = { ( f 2 , bcf 4 ) } , L 2 = { f 2 , bcf 4 } . We can simplify the computations: lt ( bcf 4 ) = abc = lt ( cf 6 ) . f 6 possibly better reduced than f 4 .( f 6 is not in G !) = ⇒ L 2 = { f 2 , cf 6 } 34 / 57

  69. Example: Cyclic-4 Next round: G = { f 4 , f 7 } , P 2 = { ( f 2 , bcf 4 ) } , L 2 = { f 2 , bcf 4 } . We can simplify the computations: lt ( bcf 4 ) = abc = lt ( cf 6 ) . f 6 possibly better reduced than f 4 .( f 6 is not in G !) = ⇒ L 2 = { f 2 , cf 6 } Symbolic preprocessing: { abc , bc 2 , abd , acd , bcd , cd 2 } T ( L 2 ) = = { f 2 , cf 6 , } L 2 34 / 57

  70. Example: Cyclic-4 Next round: G = { f 4 , f 7 } , P 2 = { ( f 2 , bcf 4 ) } , L 2 = { f 2 , bcf 4 } . We can simplify the computations: lt ( bcf 4 ) = abc = lt ( cf 6 ) . f 6 possibly better reduced than f 4 .( f 6 is not in G !) = ⇒ L 2 = { f 2 , cf 6 } Symbolic preprocessing: { abc , bc 2 , abd , acd , bcd , cd 2 } T ( L 2 ) = = { f 2 , cf 6 , } L 2 bc 2 / ∈ L ( G ) , 34 / 57

  71. Example: Cyclic-4 Next round: G = { f 4 , f 7 } , P 2 = { ( f 2 , bcf 4 ) } , L 2 = { f 2 , bcf 4 } . We can simplify the computations: lt ( bcf 4 ) = abc = lt ( cf 6 ) . f 6 possibly better reduced than f 4 .( f 6 is not in G !) = ⇒ L 2 = { f 2 , cf 6 } Symbolic preprocessing: { abc , bc 2 , abd , acd , bcd , cd 2 } T ( L 2 ) = = { f 2 , cf 6 , } L 2 bc 2 / ∈ L ( G ) , abd = lt ( bdf 4 ) , but also abd = lt ( bf 5 ) ! 34 / 57

  72. Example: Cyclic-4 Next round: G = { f 4 , f 7 } , P 2 = { ( f 2 , bcf 4 ) } , L 2 = { f 2 , bcf 4 } . We can simplify the computations: lt ( bcf 4 ) = abc = lt ( cf 6 ) . f 6 possibly better reduced than f 4 .( f 6 is not in G !) = ⇒ L 2 = { f 2 , cf 6 } Symbolic preprocessing: { abc , bc 2 , abd , acd , bcd , cd 2 } T ( L 2 ) = = { f 2 , cf 6 , } L 2 bc 2 / ∈ L ( G ) , abd = lt ( bdf 4 ) , but also abd = lt ( bf 5 ) ! Let us investigate this in more detail. 34 / 57

  73. Interlude – Simplify Idea Try to replace u · f by a product ( wv ) · g where vg corresponds to an already computed row in the Gauss. Elim. of a previous matrix M i . ⇒ Reuse rows that are reduced but not “in” G . 35 / 57

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend