computer simulation studies of skyrmionic textures in
play

COMPUTER SIMULATION STUDIES OF SKYRMIONIC TEXTURES IN HELIMAGNETIC - PowerPoint PPT Presentation

COMPUTER SIMULATION STUDIES OF SKYRMIONIC TEXTURES IN HELIMAGNETIC NANOSTRUCTURES Marijan Beg*, Hans Fangohr Faculty of Engineering and the Environment, University of Southampton , Southampton, United Kingdom * email : mb4e10@soton.ac.uk


  1. COMPUTER SIMULATION STUDIES OF SKYRMIONIC TEXTURES IN HELIMAGNETIC NANOSTRUCTURES Marijan Beg*, Hans Fangohr Faculty of Engineering and the Environment, University of Southampton , Southampton, United Kingdom * email : mb4e10@soton.ac.uk

  2. OVERVIEW 1. Initial states (analytic model) 2. Equlibrium states in a nano disk 3. Ground state phase diagram 4. Robustness 5. Hysteretic behaviour (DMI anisotropy) 6. Reversal mechanism 7. Summary 2

  3. SKYRMIONIC TEXTURES IN CONFINED HELIMAGNETIC NANOSTRUCTURES 3

  4. MOTIVATION Yu et. al., Nature 465, 901-4 (2011) a b Magnetic skyrmions possess interesting • properties promising for the development of future data-storage and information processing devices. One of the main problems, obstructing the • Schematic Lorentz TEM development of skyrmion-based devices using helimagnetic materials, is their magnetic and thermal stability . In infinitely large thin film or bulk B20 • helimagnetic samples, skyrmion phase is stabilised in presence of an external field . The motivation for this work is to explore • the skyrmionic textures in finite size B20 helimagnetic nanostructures . Thin film phase diagram 4

  5. SYSTEM UNDER STUDY Sample geometry is 10 nm thin film • disk with varying diameter Cubic B20 helimagnetic FeGe • M S = 3.84 x 10 5 Am -1 • A = 8.78 x 10 -12 Jm -1 • D = 1.58 x 10 -3 Jm -2 . • Helical period 4 π A / D = 70 nm • Sample geometry and Finite elements mesh maximum • sample skyrmion ground neighbouring node spacing smaller state than 3 nm. Finite size effects, stability, hysteretic behaviour, External field applied uniformly and • and reversal mechanism of skyrmionic textures perpendicular to the film in + z in nanostructures, direction . Marijan Beg, Dmitri Chernyshenko, Marc- Antonio Bisotti, Weiwei Wang, Maximilian zero temperature micromagnetic • Albert, Robert L. Stamps, Hans Fangohr, model arxiv:1312.7665 http://arxiv.org/abs/1312.7665 (2014) 5

  6. MICROMAGNETIC MODEL - HAMILTONIAN AND DYNAMICS - FINMAG • Finite elements based simulator. • successor of Nmag, http://nmag.soton.ac.uk • HAMILTONIAN: • Z ⇥ A ( r m ) 2 + D m · ( r ⇥ m ) � µ 0 m · H + w d d 3 r ⇤ W = No anisotropy (isotropic helimagnetic B20 material). • Full 3D model - no assumption about translational invariance of • magnetisation in out-of-film direction which radically changes the skyrmion energetics [Rybakov et al., PRB 87 , 094424 (2013)]. 6

  7. MAGNETISATION DYNAMICS Magnetisation dynamics is governed by the LLG EQUATION . • damping ∂ m ∂ t = γ ∗ m × H e ff + α m × ∂ m ∂ t precession H e ff H e ff H e ff = + = + H e ff H e ff H e ff 7

  8. ENERGY LANDSCAPE initial state relaxed state 8

  9. 
 
 SIMULATION METHOD d and H are varied in steps: 
 • ∆ d = 2 nm µ 0 ∆ H = 2 mT Gilbert damping 
 • α = 1 System is relaxed from multiple initial 
 • states by computing the magnetisation’s time development The relaxed state with the lowest energy is chosen as the ground state for • the phase space point ( d , H ). The scalar parameter S a is computed as: • � ◆� ✓ ∂ m ∂ x × ∂ m S a = 1 � d 3 r � � � m · � � 4 π ∂ x Phase diagram: S a = f ( d, H ) • 9

  10. INITIAL CONFIGURATIONS 10

  11. DEFINING SKYRMIONIC INITIAL STATES – ANALYTIC MODEL The chiral skyrmion profile is approximated in cylindrical coordinates: • Schematic Lorentz TEM a b y =0 1 m z Yu et. al., Nature 465, 901-4 (2011) m y m r = 0 0 m θ = sin( kr ) m x m z = − cos( kr ) x -1 � w 1 The effective field due to • ~ H e ff = − symmetric exchange and DMI � ~ µ 0 M s m 2 ( no external field, isotropic A r 2 ~ ~ ⇥ ⇤ H e ff = m � D ( r ⇥ ~ m ) µ 0 M S B20 material ): 11

  12. ANALYTIC MODEL - ZERO TORQUE EQUATION - In equilibrium state, the torque is zero: • m × H e ff = 0 Computing the zero radial torque at r=R for assumed chiral skyrmion • profile results in condition: kA sin 2 ( kR ) − sin(2 kR ) g ( kR ) ≡ − D + 1 = 0 2 kR This equation has solution if : • P = D kA > 2 D > 2 3 kA ⇒ 3 Two scalar parameters are computed: • ✓ ∂ m ◆ Z ∂ x × ∂ m S = d x d y m · ∂ y Z � ◆� ✓ ∂ m ∂ x × ∂ m � � S a = � d x d y � m · � � ∂ y 12

  13. m r = 0 m θ = sin( kr ) SOLUTION A m z = − cos( kr ) 1.5 1.0 0.5 A B C D E F 0.0 g ( kR ) -0.5 P =2.0 -1.0 -1.5 -2.0 1.5 0.0 0.5 1.0 2.0 2.5 3.0 3.5 kR ( π ) 3.5 F z H =0 3.0 E y =0 2.5 R D S ( kR ), S a ( kR ) C 2.0 S a 2R 1.5 B A 1.0 0.5 D C 0.0 1 S -0.5 A E F B -1.0 mz ( x ) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 kR ( π ) 0 x -1 13

  14. m r = 0 m θ = sin( kr ) SOLUTION B m z = − cos( kr ) 1.5 1.0 0.5 A B C D E F 0.0 g ( kR ) -0.5 P =2.0 -1.0 -1.5 -2.0 1.5 0.0 0.5 1.0 2.0 2.5 3.0 3.5 kR ( π ) 3.5 F z H =0 3.0 E y =0 2.5 R D S ( kR ), S a ( kR ) C 2.0 S a 2R 1.5 B A 1.0 0.5 D C 0.0 1 S -0.5 A E F B -1.0 mz ( x ) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 kR ( π ) 0 x -1 14

  15. m r = 0 m θ = sin( kr ) SOLUTION C m z = − cos( kr ) 1.5 1.0 0.5 A B C D E F 0.0 g ( kR ) -0.5 P =2.0 -1.0 -1.5 -2.0 1.5 0.0 0.5 1.0 2.0 2.5 3.0 3.5 kR ( π ) 3.5 F z H =0 3.0 E y =0 2.5 R D S ( kR ), S a ( kR ) C 2.0 S a 2R 1.5 B A 1.0 0.5 D C 0.0 1 S -0.5 A E F B -1.0 mz ( x ) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 kR ( π ) 0 x -1 15

  16. m r = 0 m θ = sin( kr ) SOLUTION D m z = − cos( kr ) 1.5 1.0 0.5 A B C D E F 0.0 g ( kR ) -0.5 P =2.0 -1.0 -1.5 -2.0 1.5 0.0 0.5 1.0 2.0 2.5 3.0 3.5 kR ( π ) 3.5 F z H =0 3.0 E y =0 2.5 R D S ( kR ), S a ( kR ) C 2.0 S a 2R 1.5 B A 1.0 0.5 D C 0.0 1 S -0.5 A E F B -1.0 mz ( x ) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 kR ( π ) 0 x -1 16

  17. m r = 0 m θ = sin( kr ) SOLUTION E m z = − cos( kr ) 1.5 1.0 0.5 A B C D E F 0.0 g ( kR ) -0.5 P =2.0 -1.0 -1.5 -2.0 1.5 0.0 0.5 1.0 2.0 2.5 3.0 3.5 kR ( π ) 3.5 F z H =0 3.0 E y =0 2.5 R D S ( kR ), S a ( kR ) C 2.0 S a 2R 1.5 B A 1.0 0.5 D C 0.0 1 S -0.5 A E F B -1.0 mz ( x ) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 kR ( π ) 0 x -1 17

  18. m r = 0 m θ = sin( kr ) SOLUTION F m z = − cos( kr ) 1.5 1.0 0.5 A B C D E F 0.0 g ( kR ) -0.5 P =2.0 -1.0 -1.5 -2.0 1.5 0.0 0.5 1.0 2.0 2.5 3.0 3.5 kR ( π ) 3.5 F z H =0 3.0 E y =0 2.5 R D S ( kR ), S a ( kR ) C 2.0 S a 2R 1.5 B A 1.0 0.5 D C 0.0 1 S -0.5 A E F B -1.0 mz ( x ) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 kR ( π ) 0 x -1 18

  19. ANALYTIC MODEL RESULTS 1.5 c C a A B P =0 P =2/3 1.0 P =0.5 y =0 0.5 P =1.0 A B C D E F 0.0 g ( kR ) P =1.5 1 -0.5 P =2.0 mz ( x ) 0 -1.0 P =2.5 x -1.5 -1 P = D -2.0 D E F kA 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 kR ( π ) 3.5 b F z y =0 H =0 3.0 E 2.5 R D S ( kR ), S a ( kR ) C 2.0 S a 2R 1.5 B 1 A 1.0 0.5 mz ( x ) 0 D C 0.0 S -0.5 A E F B x -1.0 -1 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 kR ( π ) Du, H., Ning, W., Tian, M., & Zhang, Y. (2013), Physical Review B, 87, 014401. Du, H., Ning, W., Tian, M., & Zhang, Y. (2013). EPL, 101(3), 37001. 19

  20. SIMULATION RESULTS 20

  21. EQUILIBRIUM CONFIGURATIONS 21

  22. GROUND STATE PHASE DIAGRAM We select the state with the lowest energy • Two different ground states. • FeGe thin film disk phase diagram 22

  23. d =80 nm INCOMPLETE μ 0 H =0.2 T SKYRMION (ISK) 1 mz ( x ) 0 x -1 - d /2 0 d /2 No complete spin rotation. • | S| < 1 • In literature also called “quasi- • ferromagnetic” or “vortex” state. 23 23

  24. d =160 nm μ 0 H =0.3 T ISOLATED SKYRMION (SK) 1 mz ( x ) 0 x -1 - d /2 0 d /2 Complete spin rotation • present. Significant tilt of magnetisation • at the edge which reduces | S |. 24

  25. ENERGIES OF METASTABLE STATES 1.2 iSk 1.0 3Sk z H 0.8 d /2 10 nm 2Sk μ 0 H (T) 0.6 d Sk 0.4 oSk 0.2 H3 H H2 0.0 40 60 80 100 120 140 160 180 d (nm) 25

  26. ROBUSTNESS 1.0 0.5 z H =0 10 nm d /2 m z ( x ) 0.0 x - d /2 d /2 0 -0.5 d =120 nm d =140 nm d =160 nm d =100 nm d =80 nm d =180 nm -1.0 -90 -60 -30 0 30 60 90 Skyrmionic textures able to adapt • x (nm) 220 their size to accommodate the z m z z s -cos( kx ) 200 H size of a hosting nanostructure. s =2 π / k (nm) 180 d /2 iSk 10 nm x This provides the robustness of - d /2 0 d /2 • 160 technology built on skyrmions. d 140 120 Sk iSk and Sk have different core • 100 orientation . 80 40 60 80 100 120 140 160 180 d (nm) Du, H., Ning, W., Tian, M., & Zhang, Y. (2013), Physical Review B, 87, 014401. 26

  27. POSSIBLE STABILISING MECHANISM Rybakov et al., PRB 87 , 094424 (2013) no demagnetisation 2D 27

  28. POSSIBLE STABILISING MECHANISM 28

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend