computer algebra methods for testing the structural
play

Computer algebra methods for testing the structural stability of - PowerPoint PPT Presentation

Computer algebra methods for testing the structural stability of multidimensional systems Yacine Bouzidi , Alban Quadrat , Fabrice Rouillier INRIA Saclay - le-de-France, Disco project INRIA Lille, Nord Europe,


  1. Computer algebra methods for testing the structural stability of multidimensional systems Yacine Bouzidi ⋆ , Alban Quadrat ⋆⋆ , Fabrice Rouillier ⋆⋆⋆ ⋆ INRIA Saclay - Île-de-France, Disco project ⋆⋆ INRIA Lille, Nord Europe, NON-A Project ⋆⋆⋆ INRIA Paris - Roquencourt, Ouragan ⋆ yacine.bouzidi@inria.fr , ⋆⋆ alban.quadrat@inria.fr , ⋆⋆⋆ Fabrice.Rouillier@inria.fr supported by the ANR MSDOS Journées Nationales de Calcul Formel, Cluny, 2-6 Novembre 2015

  2. Overview Multidimensional systems 1 Structural stability 2 Contribution on the stability test 3 Ongoing work on the stability analysis 4 2/23 Yacine Bouzidi, Alban Quadrat, Fabrice Rouillier Stability of n -dimensional systems

  3. Overview Multidimensional systems 1 Structural stability 2 Contribution on the stability test 3 Ongoing work on the stability analysis 4 3/23 Yacine Bouzidi, Alban Quadrat, Fabrice Rouillier Stability of n -dimensional systems

  4. Discrete-time linear shift-invariant systems • Let ( y n ) n ∈ N and ( u n ) n ∈ N be 2 sequences satisfying the equation: y n + 2 − 3 y n + 1 + 2 y n = 2 u n + 1 + 2 u n ,    y 0 = 0 , ( ⋆ ) y 1 = 0 .   • Definition: The Z -transform of a sequence = ( x n ) n ∈ Z is defined by: � x n z − n . Z (( x n ) n ∈ Z )( z ) := n ∈ Z 2 ( z − 1 + 1 ) 2 ( z 2 + z ) ( ⋆ ) ⇒ Z ( y )( z ) = z − 2 − 3 z − 1 + 2 Z ( u )( z ) = 2 z 2 − 3 z + 1 Z ( u )( z ) . • Definition: The rational function � s j = 0 b j z − j P ( z ) := � r i = 0 a i z − i is called the transfer function of the discrete-time linear system: r s � � a i y i = b j u j . i = 0 j = 0 4/23 Yacine Bouzidi, Alban Quadrat, Fabrice Rouillier Stability of n -dimensional systems

  5. Discrete multidimensional systems • Roesser model: � � � �  x h ( i + 1 , j ) x h ( i , j )  = A + B u ( i , j ) ,  x v ( i , j + 1 )  x v ( i , j )   � � x h ( i , j )   y ( i , j ) = C + D u ( i , j ) .   x v ( i , j )  • Fornasini-Marchesini models: x ( i + 1 , j + 1 ) = A 1 x ( i + 1 , j )+ A 2 x ( i , j + 1 )+ B 1 u ( i + 1 , j )+ B 2 u ( i , j + 1 ) , . . . • n -dimensional recursive filters: digitial image processing, . . . j := ( j 1 , . . . , j n ) , k := ( k 1 , . . . , k n ) ∈ Z n ⇒ k − j := ( k 1 − j 1 , . . . , k n − j n ) z − k := z − k 1 � h ( k ) z − k , . . . z − k n Z (( h ( k )) k ∈ Z n )( z ) := . 1 n k ∈ Z n � y ( k ) = ( h ⋆ u )( k ) := h ( k − j ) u ( j ) ⇒ Z ( y )( z ) = Z ( h )( z ) Z ( u )( z ) , j ∈ Z n Z ( h )( z 1 , . . . , z n ) = n ( z 1 , . . . , z n ) d ( z 1 , . . . , z n ) ∈ R ( z 1 , . . . , z n ) . 5/23 Yacine Bouzidi, Alban Quadrat, Fabrice Rouillier Stability of n -dimensional systems

  6. Overview Multidimensional systems 1 Structural stability 2 Contribution on the stability test 3 Ongoing work on the stability analysis 4 6/23 Yacine Bouzidi, Alban Quadrat, Fabrice Rouillier Stability of n -dimensional systems

  7. Structural stability • P := N ( z 1 ,..., z n ) D ( z 1 ,..., z n ) ∈ R ( z 1 , . . . , z n ) : a transfer function ( gcd ( D , N ) = 1). • The closed unit polydisc of C n : n := { z = ( z 1 , . . . , z n ) ∈ C n | | z i | ≤ 1 , i = 1 , . . . , n , } . D n , i.e.: • Definition: P is structurally stable if D is devoid from zero in D n : D ( z 1 , . . . , z n ) � = 0 . ( 1 ) ∀ z = ( z 1 , . . . , z n ) ∈ D • The affine algebraic set associated to D : V C ( D ) := { z = ( z 1 , . . . , z n ) ∈ C n | D ( z 1 , . . . , z n ) = 0 } . • Condition (1) is equivalent to: n = ∅ . V C ( D ) ∩ D 7/23 Yacine Bouzidi, Alban Quadrat, Fabrice Rouillier Stability of n -dimensional systems

  8. Previous works The case n = 1 • Check that the complex roots of the polynomial D ( z ) = a n z n + a n − 1 z n − 1 + . . . + a 0 do not belong to D := { z ∈ C | | z | ≤ 1 } . • Several algebraic stability criteria (Jury test, Bistritz test, etc), discrete time analogues of the Routh-Hurwitz criterion. • Based on Cauchy index computation: sign variation in some polynomial sequences. • The complexity of a univariate gcd computation. 8/23 Yacine Bouzidi, Alban Quadrat, Fabrice Rouillier Stability of n -dimensional systems

  9. Previous works Bistritz test • Let D ( z ) := a n z n + a n − 1 z n − 1 + . . . + a 0 and D ⋆ ( z ) := z n D ( z − 1 ) . • Compute the sequence of polynomials { T i ( z ) } i = n ,..., 0 , defined by  T n ( z ) := D ( z ) + D ⋆ ( z ) ,    T n − 1 ( z ) := D ( z ) + D ⋆ ( z )    , ( z − 1 )  T i − 1 ( z ) := δ i + 1 ( 1 + z ) T i ( z ) − T i + 1 ( z )    ,   z where δ i + 1 := T i + 1 ( 0 ) T i ( 0 ) for i = n − 1 , . . . , 1. • Criterion: The system is stable if and only if the sequence is normal and the number of sign variation in { T n ( 1 ) , . . . , T 0 ( 1 ) } is zero. 8/23 Yacine Bouzidi, Alban Quadrat, Fabrice Rouillier Stability of n -dimensional systems

  10. Previous works The case n>1 • First step: Simplification of the initial condition. • [Strintzis,Huang 1977]: D ( 0 , . . . , 0 , z n ) � = 0 , | z n | ≤ 1 ,   D ( 0 , . . . , 0 , z n − 1 , z n ) � = 0 , | z n − 1 | ≤ 1 , | z n | = 1 ,     . .  . . . .  D ( 0 , z 2 , . . . , z n ) � = 0 , | z 2 | ≤ 1 , | z i | = 1 , i > 2 ,     D ( z 1 , z 2 , . . . , z n ) � = 0 , | z 1 | ≤ 1 , | z i | = 1 , i > 1 .  • [DeCarlo et al, 1977]: D ( z 1 , 1 , . . . , 1 ) � = 0 , | z 1 | ≤ 1 ,   D ( 1 , z 2 , 1 , . . . , 1 ) � = 0 , | z 2 | ≤ 1 ,     . .  . . . .  D ( 1 , . . . , 1 , z n ) � = 0 , | z n | ≤ 1 ,     D ( z 1 , . . . , z n ) � = 0 , | z 1 | = . . . = | z n | = 1 .  9/23 Yacine Bouzidi, Alban Quadrat, Fabrice Rouillier Stability of n -dimensional systems

  11. Previous works The case n>1 • Second step: Implementation. • The case n = 2 : Numerous tests (Bistritz (94,99,02,03,04), Xu et al. 04, Fu et al. 06, etc). Most of them are based on Strintzis conditions. Generalization of univariate tests (sub-resultant computation). • The case n > 2 : very few (Dumetriscu 06, Serban and Najim 07). Sum of square techniques: either inefficient or conservative. 9/23 Yacine Bouzidi, Alban Quadrat, Fabrice Rouillier Stability of n -dimensional systems

  12. Overview Multidimensional systems 1 Structural stability 2 Contribution on the stability test 3 Ongoing work on the stability analysis 4 10/23 Yacine Bouzidi, Alban Quadrat, Fabrice Rouillier Stability of n -dimensional systems

  13. DeCarlo’s conditions • Start with DeCarlo’s conditions: D ( z 1 , 1 , . . . , 1 ) � = 0 , | z 1 | ≤ 1 ,    D ( 1 , z 2 , 1 , . . . , 1 ) � = 0 , | z 2 | ≤ 1 ,      . .  . . . .  D ( 1 , . . . , 1 , z n ) � = 0 , | z n | ≤ 1 ,      D ( z 1 , . . . , z n ) � = 0 , | z 1 | = . . . = | z n | = 1 .   • All the conditions except the last one can be tested using classical univariate stability tests. • Focus on the condition: D ( z 1 , . . . , z n ) � = 0, | z 1 | = . . . = | z n | = 1. 11/23 Yacine Bouzidi, Alban Quadrat, Fabrice Rouillier Stability of n -dimensional systems

  14. One first approach • z k := x k + i y k , x k , y k ∈ R , k = 1 , . . . , n , i 2 = − 1. The problem is equivalent to the study of the algebraic system: R ( D ( x 1 + i y 1 , . . . , x n + i y n )) := R ( x 1 , y 1 , . . . , x n , y n ) = 0 ,    C ( D ( x 1 + i y 1 , . . . , x n + i y n )) := C ( x 1 , y 1 , . . . , x n , y n ) = 0 ,      x 2 1 + y 2 1 − 1 = 0 , ( S ) . .  .     x 2 n + y 2  n − 1 = 0 .  • Case n = 2 : zero-dimensional system � univariate rational representation, triangular representation, Gröbner bases. • Case n > 2 : systems with positive dimension � cylindrical algebraic decomposition, critical points methods 12/23 Yacine Bouzidi, Alban Quadrat, Fabrice Rouillier Stability of n -dimensional systems

  15. One first approach • z k := x k + i y k , x k , y k ∈ R , k = 1 , . . . , n , i 2 = − 1. The problem is equivalent to the study of the algebraic system: R ( D ( x 1 + i y 1 , . . . , x n + i y n )) := R ( x 1 , y 1 , . . . , x n , y n ) = 0 ,    C ( D ( x 1 + i y 1 , . . . , x n + i y n )) := C ( x 1 , y 1 , . . . , x n , y n ) = 0 ,      x 2 1 + y 2 1 − 1 = 0 , ( S ) . .  .     x 2 n + y 2  n − 1 = 0 .  • Case n = 2 : zero-dimensional system � univariate rational representation, triangular representation, Gröbner bases. • Case n > 2 : systems with positive dimension � cylindrical algebraic decomposition, critical points methods Drawback: The number of variables is doubled! 12/23 Yacine Bouzidi, Alban Quadrat, Fabrice Rouillier Stability of n -dimensional systems

  16. Alternative approach • Goal: Avoid doubling the number of variables. • The unit poly-circle defines a n -D subspace in the 2 n -D complex space. • Via some transformations, the problem can be reduced to the search of zeros in the real space R n . • The obtained conditions are checked using classical algorithms for solving algebraic systems. 13/23 Yacine Bouzidi, Alban Quadrat, Fabrice Rouillier Stability of n -dimensional systems

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend