computational nanoscience at nersc
play

Computational Nanoscience at NERSC Lin-Wang Wang Computational - PowerPoint PPT Presentation

Computational Nanoscience at NERSC Lin-Wang Wang Computational Research Division Lawrence Berkeley National Lab US Department of Energy Office of Science What can we do ? How do we do it ? Examples Contact: linwang wang,


  1. Computational Nanoscience at NERSC Lin-Wang Wang Computational Research Division Lawrence Berkeley National Lab US Department of Energy Office of Science • What can we do ? • How do we do it ? • Examples Contact: linwang wang, lwwang@lbl.gov

  2. Material as a mark of civilization Bronze age Stone age Semiconductor Nanostructure information age age Nanoscience is a material science: Nano size building block Assemble them into device Contact: linwang wang, lwwang@lbl.gov

  3. Making new solid state materials A 2 B • New crystal compounds 2 A − x B • Alloys 1 x • Impurity and doping • Modifying the size and shape of the material Contact: linwang wang, lwwang@lbl.gov

  4. Nanostructure as a new material Definition: Nanostructure is an assembly of nanometer scale “building blocks”. Why nanometer scale: This is the scale when the properties of these “building blocks” become different from bulk. size Electron Wavefunction Nanostructure Both are in nanometers Contact: linwang wang, lwwang@lbl.gov

  5. Examples of new properties • Band gap increase CdSe quantum dot • Single electron effects on transport (Coulomb blockade). • Mechanical properties, surface effects and no dislocations Contact: linwang wang, lwwang@lbl.gov

  6. Theoretical Challenge Three corner stones of modern science: Theoretical analysis Computational simulation Experiment atoms nanostructures bulks molecules analytical sol. Analytical statistics, band structure. solution special funct. expansion Feynman diagram Numerical Nanostructures are often complex systems: solution need atomistic, realistic, numerical simulations. Contact: linwang wang, lwwang@lbl.gov

  7. Computational challenge atoms nanostructures bulk molecules Infinite 1-100 1000-10^6 (1-10 atoms size atoms atoms in a unit cell) • Ab initio method Challenge for Ab initio method • Effective mass computational method method nanoscience. 3 O ( N ) Ab initio New methodology Even larger elements and algorithm Supercomputer and reliability (ES!) Contact: linwang wang, lwwang@lbl.gov

  8. Ab initio electronic structure calculations All the material science problems are solved ! ----- Schroedinger, 1930’s 1 1 Z ∑ ∑ ∑ − ∇ + + Ψ = Ψ 2 { } ( r ,.. r ) E ( r ,.. r ) i 1 N 1 N − − 2 | r r | | r R | i i , j i , R i j i N Ψ N ( r 1 r ,.. ) Linear equation, but extremely large dimension: 2 Density functional theory and local density approximation ----- W. Kohn’s 1997 Nobel prize 1 1 ∑ 2 N − ∇ + ρ + ψ = ψ 2 { V ( r , [ ( r )]) } ( r ) E ( r ) i i i − 2 | r R | R ∑ ρ = ψ 2 ( r ) | ( r ) | ψ ( r ) : single electron wave function i i i Contact: linwang wang, lwwang@lbl.gov

  9. Ab initio density functional calculations 1 − ∇ + ψ = ψ 2 { V ( r )} ( r ) E ( r ) i i i 2 ψ { } Selfconsistency = i i 1 ,.., N N electron N wave functions N ∑ ρ = ψ 2 ( r ) | ( r ) | i i Density Functional V ( r ) Contact: linwang wang, lwwang@lbl.gov

  10. Two tasks for a hybrid nano computation method [or the charge density ρ (r) ] (1) To get the potential V(r) so we will have the Hamiltonian. (We want ab initio reliability, but not a full ab initio calculation) (2) To solve the single particle Hamiltonian (Schroedinger’s equation), to get the physical properties. 1 − ∇ + ψ = ψ 2 { V ( r )} ( r ) E ( r ) i i i 2 (Not the usual PDE, many eigen states, don’t want and need to solve all of them) Contact: linwang wang, lwwang@lbl.gov

  11. Charge patching method Non-selfconsistent LDA Selfconsistent LDA quality potential for calculation of a single nanotube graphite sheet Get information from small system ab initio calc., then generate the charge densities for large systems Contact: linwang wang, lwwang@lbl.gov

  12. Motif based charge patching method ρ ρ ( LDA ) motif graphite = ∑ ρ ρ − patch aligned ( r ) ( r R ) nanotube motif R Error: 1%, ~20 meV eigen energy error. Contact: linwang wang, lwwang@lbl.gov

  13. Charge patching: free standing quantum dots In 675 P 652 LDA quality calculations (eigen energy error ~ 20 meV) 64 processors (IBM SP3) for ~ 1 hour Total charge density CBM VBM motifs Contact: linwang wang, lwwang@lbl.gov

  14. The accuracy for the small Si quantum dot Contact: linwang wang, lwwang@lbl.gov

  15. Folded Spectrum Method 1 − ∇ + ψ = ψ 2 { V ( r )} ( r ) E ( r ) i i i 2 ψ = ε ψ − ε ψ = ε − ε ψ H 2 2 ( H ) ( ) i i i ref i i ref i N Contact: linwang wang, lwwang@lbl.gov

  16. Planewave expansion of the wavefunction 1 − ∇ + ψ = ψ 2 { V ( r )} ( r ) E ( r ) i i i 2 ∑ ψ = iqr ( r ) C ( q ) e q Fast Fourier Transformation between real space ψ (r) and Fourier space C(q). Contact: linwang wang, lwwang@lbl.gov

  17. A parallel Fast Fourier Transformation code • Specially designed for PW elec. structure calculation. • Work load balance • Memory balance • Minimum communication Time for one FFT (sec) 576x576x576 FFT 0.3 2 8 8 0.03 x 2 8 8 x 2 8 8 EPM calc. 128x128x128 0.003 Contact: linwang wang, lwwang@lbl.gov

  18. NERSC NERSC: National Energy Research Scientific Computing Center memory processor 6000 IBM SP3 processors, total peak speed: ~ 5 Tflop Contact: linwang wang, lwwang@lbl.gov

  19. Free standing quantum dots CdSe quantum dot TEM image • Chemically synthesised • Interior atoms are in bulk crystal structure • Surface atoms are passivated • Diameter ~ 20-100 A • A few thousand atoms, beyond ab initio method Contact: linwang wang, lwwang@lbl.gov

  20. Quantum dot wavefunctions Cross section electron wavefunctions Contact: linwang wang, lwwang@lbl.gov

  21. CdSe quantum dot results Contact: linwang wang, lwwang@lbl.gov

  22. CdSe quantum dots as biological tags • Optically more stable than dye molecules • Can have multiple colors Contact: linwang wang, lwwang@lbl.gov

  23. Photoluminescence intermittency of CdSe QD Contact: linwang wang, lwwang@lbl.gov

  24. Auger effect in CdSe quantum dot Auger life times Exp. Calc. Cooling ~0.2-0.5ps >0.5ps 2 exciton->1 exc. ~2.7 ps ~2. ps τ τ / − > − > 2 eh 1 eh 3 eh 1 eh 2.7 2.4 Contact: linwang wang, lwwang@lbl.gov

  25. Polarization of CdSe quantum rods CdSe quantum rods The electron wavefunctions of a quantum rods Contact: linwang wang, lwwang@lbl.gov

  26. Polarization of quantum rods (continued) Calc. Expt. 100 40 1.30 Stock shift (meV) 30 80 1.25 20 60 1.20 10 40 1.15 0 Energy (eV) 2 4 6 8 10 1.2 1.6 2.0 2.4 2.8 Aspect ratio of the quantum rods 1.10 -1.10 -1.15 -1.20 0.6 -1.25 Polarization 0.4 -1.30 Calc: Expt: -1.35 0.2 -1.40 0.0 -1.45 1.0 1.2 1.4 1.6 1.8 2.0 0 2 4 6 8 10 Aspect Ratio Aspect ratio Contact: linwang wang, lwwang@lbl.gov

  27. Quantum wire electronic states (c) CBM [111] (a) CBM (xz-plane) x y (d) VBM (b) VBM (xz-plane) d=5.18 nm Contact: linwang wang, lwwang@lbl.gov

  28. InP quantum rods and wires (111) direction rods and wires -3.0 -3.0 (b) (a) -3.1 -3.1 1 π -3.2 -3.2 -3.3 -3.3 -3.4 -3.4 4 σ -3.5 -3.5 3 σ Energy level (eV) -3.6 -3.6 2 σ 1 σ -3.7 -3.7 -6.0 -6.0 1 σ 2 σ -6.1 -6.1 3 σ -6.2 -6.2 4 σ -6.3 -6.3 5 σ -6.4 -6.4 -6.5 -6.5 0.0 .1 .2 .3 .4 .5 1 2 3 4 5 6 k z Aspect ratio Rods Wire Contact: linwang wang, lwwang@lbl.gov

  29. InP wires / InP dots Contact: linwang wang, lwwang@lbl.gov

  30. GaN (111) and (112) quantum wires (WZ) (111) GaN wire (112) GaN wire CB1 CB2 Contact: linwang wang, lwwang@lbl.gov

  31. CdSe quantum dot: arrow shape (1) CB 1 (2) CB 2 (3) CB 3 L=9.9nm D=2nm (5) VB 2 (4) VB 1 (6) VB 3 Contact: linwang wang, lwwang@lbl.gov

  32. Different Bloch state characters for the VB states VB-1 VB-2 VB-4 VB-3 Contact: linwang wang, lwwang@lbl.gov

  33. CdSe tetrapod electronic states Contact: linwang wang, lwwang@lbl.gov

  34. CdSe/CdTe tetrapod with one CdTe arm Electron state Hole state Contact: linwang wang, lwwang@lbl.gov

  35. CdSe/CdS/CdSe quantum rod VBM CBM Band alignment of bulk CdSe/CdS CdSe CdS 7.470eV 7.177eV CB CB 6.423eV VB 6.155eV Contact: linwang wang, lwwang@lbl.gov

  36. Anticrossing (coupling) states under electric field 2.270 2.265 CB2 2.260 Energy (eV) ∆ ~ 10 meV 2.255 2.250 CB1 (a) C B 1 2.245 4x10 -6 2.240 0 10 20 30 40 50 60 70 2x10 -6 Electric field (meV/10nm) 0x10 0 (b) C B 2 6 double layers of CdS: ∆ =10 meV 4x10 -6 3 double layers of CdS: ∆ =30 meV 2x10 -6 Contact: linwang wang, lwwang@lbl.gov 0x10 0 0 2 4 6 8 10

  37. Core/shell quantum dots CdSe CdSe/CdS CdSe/CdTe CBM VBM Contact: linwang wang, lwwang@lbl.gov

  38. Effects of stacking faults Contact: linwang wang, lwwang@lbl.gov

  39. Self-assembled quantum dot AFM image • Formed by themselves during MBE growth • Strain between the dot and the substrate • Size range ~ 100-500 A, ~ a million atoms InAs on GaAs substrate • No dislocations, or surface defects • Can be used for single electron device Contact: linwang wang, lwwang@lbl.gov

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend