complex analytic methods in free
play

Complex Analytic Methods in Free vvb Probability Theory Hari - PowerPoint PPT Presentation

f ( z ) , , etc. H. Bercovici Free convolutions Analytic apparatus Limit theorems Regularity Extensions Omissions Complex Analytic Methods in Free vvb Probability Theory Hari Bercovici BIRS, January 2008 Random variables f (


  1. Cauchy transforms f ( z ) , µ ⊞ ν , etc. H. Bercovici Free convolutions Analytic apparatus Limit theorems • µ probability distribution on R Regularity Extensions • z ∈ C + upper half-plane Omissions vvb • � ∞ d µ ( t ) G µ ( z ) = z − t −∞ • F µ ( z ) = 1 / G µ ( z ) ; F µ : C + → C + • Function inverse F < − 1 > defined in µ D r ,ε = { z : | z − ir | < ( 1 − ε ) r } for large r • ϕ µ ( z ) = R µ ( 1 / z ) = F < − 1 > ( z ) − z V-transform of µ µ

  2. Cauchy transforms f ( z ) , µ ⊞ ν , etc. H. Bercovici Free convolutions Analytic apparatus Limit theorems • µ probability distribution on R Regularity Extensions • z ∈ C + upper half-plane Omissions vvb • � ∞ d µ ( t ) G µ ( z ) = z − t −∞ • F µ ( z ) = 1 / G µ ( z ) ; F µ : C + → C + • Function inverse F < − 1 > defined in µ D r ,ε = { z : | z − ir | < ( 1 − ε ) r } for large r • ϕ µ ( z ) = R µ ( 1 / z ) = F < − 1 > ( z ) − z V-transform of µ µ • ϕ µ ⊞ ν = ϕ µ + ϕ ν

  3. Cauchy transforms f ( z ) , µ ⊞ ν , etc. H. Bercovici Free convolutions Analytic apparatus Limit theorems • µ probability distribution on R Regularity Extensions • z ∈ C + upper half-plane Omissions vvb • � ∞ d µ ( t ) G µ ( z ) = z − t −∞ • F µ ( z ) = 1 / G µ ( z ) ; F µ : C + → C + • Function inverse F < − 1 > defined in µ D r ,ε = { z : | z − ir | < ( 1 − ε ) r } for large r • ϕ µ ( z ) = R µ ( 1 / z ) = F < − 1 > ( z ) − z V-transform of µ µ • ϕ µ ⊞ ν = ϕ µ + ϕ ν • There are corresponding results for ⊠

  4. A basic tool f ( z ) , µ ⊞ ν , etc. H. Bercovici Free convolutions Analytic apparatus Limit theorems Regularity Extensions Omissions vvb • ϕ µ ( z ) = F < − 1 > ( z ) − z µ

  5. A basic tool f ( z ) , µ ⊞ ν , etc. H. Bercovici Free convolutions Analytic apparatus Limit theorems Regularity Extensions Omissions vvb • ϕ µ ( z ) = F < − 1 > ( z ) − z µ • ϕ µ ( z ) ≈ z − F µ ( z ) in D r ,ε as r → ∞

  6. A basic tool f ( z ) , µ ⊞ ν , etc. H. Bercovici Free convolutions Analytic apparatus Limit theorems Regularity Extensions Omissions vvb • ϕ µ ( z ) = F < − 1 > ( z ) − z µ • ϕ µ ( z ) ≈ z − F µ ( z ) in D r ,ε as r → ∞ • The approximation is uniformly better when µ is concentrated near zero.

  7. A basic tool f ( z ) , µ ⊞ ν , etc. H. Bercovici Free convolutions Analytic apparatus Limit theorems Regularity Extensions Omissions vvb • ϕ µ ( z ) = F < − 1 > ( z ) − z µ • ϕ µ ( z ) ≈ z − F µ ( z ) in D r ,ε as r → ∞ • The approximation is uniformly better when µ is concentrated near zero. • meaning: ratio closer to one

  8. A basic tool f ( z ) , µ ⊞ ν , etc. H. Bercovici Free convolutions Analytic apparatus Limit theorems Regularity Extensions Omissions vvb • ϕ µ ( z ) = F < − 1 > ( z ) − z µ • ϕ µ ( z ) ≈ z − F µ ( z ) in D r ,ε as r → ∞ • The approximation is uniformly better when µ is concentrated near zero. • meaning: ratio closer to one • larger r • smaller ε

  9. Some results f ( z ) , µ ⊞ ν , etc. H. Bercovici Free convolutions Analytic apparatus Limit theorems Regularity Extensions Omissions • µ n → µ equivalent to ϕ µ n → ϕ µ in D r ,ε , ε fixed, r large, vvb with some uniformity at ∞

  10. Some results f ( z ) , µ ⊞ ν , etc. H. Bercovici Free convolutions Analytic apparatus Limit theorems Regularity Extensions Omissions • µ n → µ equivalent to ϕ µ n → ϕ µ in D r ,ε , ε fixed, r large, vvb with some uniformity at ∞ • { µ n } n ≥ 1 , ν n = µ 1 ⊞ µ 2 ⊞ · · · ⊞ µ n , ρ n = µ 1 ∗ µ 2 ∗ · · · ∗ µ n

  11. Some results f ( z ) , µ ⊞ ν , etc. H. Bercovici Free convolutions Analytic apparatus Limit theorems Regularity Extensions Omissions • µ n → µ equivalent to ϕ µ n → ϕ µ in D r ,ε , ε fixed, r large, vvb with some uniformity at ∞ • { µ n } n ≥ 1 , ν n = µ 1 ⊞ µ 2 ⊞ · · · ⊞ µ n , ρ n = µ 1 ∗ µ 2 ∗ · · · ∗ µ n • ν n → ν ⇔ ρ n → ρ (three series theorem)

  12. Some results f ( z ) , µ ⊞ ν , etc. H. Bercovici Free convolutions Analytic apparatus Limit theorems Regularity Extensions Omissions • µ n → µ equivalent to ϕ µ n → ϕ µ in D r ,ε , ε fixed, r large, vvb with some uniformity at ∞ • { µ n } n ≥ 1 , ν n = µ 1 ⊞ µ 2 ⊞ · · · ⊞ µ n , ρ n = µ 1 ∗ µ 2 ∗ · · · ∗ µ n • ν n → ν ⇔ ρ n → ρ (three series theorem) • n -divisibility: µ = ν ⊞ ν ⊞ · · · ⊞ ν � �� � n times

  13. Some results f ( z ) , µ ⊞ ν , etc. H. Bercovici Free convolutions Analytic apparatus Limit theorems Regularity Extensions Omissions • µ n → µ equivalent to ϕ µ n → ϕ µ in D r ,ε , ε fixed, r large, vvb with some uniformity at ∞ • { µ n } n ≥ 1 , ν n = µ 1 ⊞ µ 2 ⊞ · · · ⊞ µ n , ρ n = µ 1 ∗ µ 2 ∗ · · · ∗ µ n • ν n → ν ⇔ ρ n → ρ (three series theorem) • n -divisibility: µ = ν ⊞ ν ⊞ · · · ⊞ ν � �� � n times • infinite-divisibility: all n

  14. Some results f ( z ) , µ ⊞ ν , etc. H. Bercovici Free convolutions Analytic apparatus Limit theorems Regularity Extensions Omissions • µ n → µ equivalent to ϕ µ n → ϕ µ in D r ,ε , ε fixed, r large, vvb with some uniformity at ∞ • { µ n } n ≥ 1 , ν n = µ 1 ⊞ µ 2 ⊞ · · · ⊞ µ n , ρ n = µ 1 ∗ µ 2 ∗ · · · ∗ µ n • ν n → ν ⇔ ρ n → ρ (three series theorem) • n -divisibility: µ = ν ⊞ ν ⊞ · · · ⊞ ν � �� � n times • infinite-divisibility: all n • µ is ∞ -divisible ⇔ ϕ µ : C + → C −

  15. Limit laws f ( z ) , µ ⊞ ν , etc. H. Bercovici Free convolutions Analytic apparatus Limit theorems • { µ nj : n ≥ 1 , 1 ≤ j ≤ k n } distributions on R Regularity Extensions Omissions vvb

  16. Limit laws f ( z ) , µ ⊞ ν , etc. H. Bercovici Free convolutions Analytic apparatus Limit theorems • { µ nj : n ≥ 1 , 1 ≤ j ≤ k n } distributions on R Regularity Extensions • Infinitesimal if for all ε > 0 Omissions vvb n →∞ min lim 1 ≤ j ≤ k n µ nj (( − ε, ε )) = 1

  17. Limit laws f ( z ) , µ ⊞ ν , etc. H. Bercovici Free convolutions Analytic apparatus Limit theorems • { µ nj : n ≥ 1 , 1 ≤ j ≤ k n } distributions on R Regularity Extensions • Infinitesimal if for all ε > 0 Omissions vvb n →∞ min lim 1 ≤ j ≤ k n µ nj (( − ε, ε )) = 1 • µ n = µ n 1 ⊞ µ n 2 ⊞ · · · ⊞ µ nk n , ν n = µ n 1 ∗ µ n 2 ∗ · · · ∗ µ nk n

  18. Limit laws f ( z ) , µ ⊞ ν , etc. H. Bercovici Free convolutions Analytic apparatus Limit theorems • { µ nj : n ≥ 1 , 1 ≤ j ≤ k n } distributions on R Regularity Extensions • Infinitesimal if for all ε > 0 Omissions vvb n →∞ min lim 1 ≤ j ≤ k n µ nj (( − ε, ε )) = 1 • µ n = µ n 1 ⊞ µ n 2 ⊞ · · · ⊞ µ nk n , ν n = µ n 1 ∗ µ n 2 ∗ · · · ∗ µ nk n • If µ n → µ then µ is ∞ -divisible

  19. Limit laws f ( z ) , µ ⊞ ν , etc. H. Bercovici Free convolutions Analytic apparatus Limit theorems • { µ nj : n ≥ 1 , 1 ≤ j ≤ k n } distributions on R Regularity Extensions • Infinitesimal if for all ε > 0 Omissions vvb n →∞ min lim 1 ≤ j ≤ k n µ nj (( − ε, ε )) = 1 • µ n = µ n 1 ⊞ µ n 2 ⊞ · · · ⊞ µ nk n , ν n = µ n 1 ∗ µ n 2 ∗ · · · ∗ µ nk n • If µ n → µ then µ is ∞ -divisible • µ n → µ ⇔ ν n → ν , where ν is uniquely determined by µ . (Ex.: µ semicircle corresponds with ν normal; CLT)

  20. Limit laws f ( z ) , µ ⊞ ν , etc. H. Bercovici Free convolutions Analytic apparatus Limit theorems • { µ nj : n ≥ 1 , 1 ≤ j ≤ k n } distributions on R Regularity Extensions • Infinitesimal if for all ε > 0 Omissions vvb n →∞ min lim 1 ≤ j ≤ k n µ nj (( − ε, ε )) = 1 • µ n = µ n 1 ⊞ µ n 2 ⊞ · · · ⊞ µ nk n , ν n = µ n 1 ∗ µ n 2 ∗ · · · ∗ µ nk n • If µ n → µ then µ is ∞ -divisible • µ n → µ ⇔ ν n → ν , where ν is uniquely determined by µ . (Ex.: µ semicircle corresponds with ν normal; CLT) • almost analogous results for ⊠

  21. Limit laws f ( z ) , µ ⊞ ν , etc. H. Bercovici Free convolutions Analytic apparatus Limit theorems • { µ nj : n ≥ 1 , 1 ≤ j ≤ k n } distributions on R Regularity Extensions • Infinitesimal if for all ε > 0 Omissions vvb n →∞ min lim 1 ≤ j ≤ k n µ nj (( − ε, ε )) = 1 • µ n = µ n 1 ⊞ µ n 2 ⊞ · · · ⊞ µ nk n , ν n = µ n 1 ∗ µ n 2 ∗ · · · ∗ µ nk n • If µ n → µ then µ is ∞ -divisible • µ n → µ ⇔ ν n → ν , where ν is uniquely determined by µ . (Ex.: µ semicircle corresponds with ν normal; CLT) • almost analogous results for ⊠ • differences: the correspondence µ ↔ ν not bijective

  22. Limit laws f ( z ) , µ ⊞ ν , etc. H. Bercovici Free convolutions Analytic apparatus Limit theorems • { µ nj : n ≥ 1 , 1 ≤ j ≤ k n } distributions on R Regularity Extensions • Infinitesimal if for all ε > 0 Omissions vvb n →∞ min lim 1 ≤ j ≤ k n µ nj (( − ε, ε )) = 1 • µ n = µ n 1 ⊞ µ n 2 ⊞ · · · ⊞ µ nk n , ν n = µ n 1 ∗ µ n 2 ∗ · · · ∗ µ nk n • If µ n → µ then µ is ∞ -divisible • µ n → µ ⇔ ν n → ν , where ν is uniquely determined by µ . (Ex.: µ semicircle corresponds with ν normal; CLT) • almost analogous results for ⊠ • differences: the correspondence µ ↔ ν not bijective • for the circle, there are no ⊠ -idempotents

  23. Another basic tool f ( z ) , µ ⊞ ν , etc. H. Bercovici Free convolutions Analytic apparatus Limit theorems Regularity Extensions Omissions vvb • f , g : C + → C analytic

  24. Another basic tool f ( z ) , µ ⊞ ν , etc. H. Bercovici Free convolutions Analytic apparatus Limit theorems Regularity Extensions Omissions vvb • f , g : C + → C analytic • f ≺ g if f ( z ) = g ( h ( z )) for some h : C + → C + analytic (Littlewood subordination)

  25. Another basic tool f ( z ) , µ ⊞ ν , etc. H. Bercovici Free convolutions Analytic apparatus Limit theorems Regularity Extensions Omissions vvb • f , g : C + → C analytic • f ≺ g if f ( z ) = g ( h ( z )) for some h : C + → C + analytic (Littlewood subordination) • µ, ν distributions on R

  26. Another basic tool f ( z ) , µ ⊞ ν , etc. H. Bercovici Free convolutions Analytic apparatus Limit theorems Regularity Extensions Omissions vvb • f , g : C + → C analytic • f ≺ g if f ( z ) = g ( h ( z )) for some h : C + → C + analytic (Littlewood subordination) • µ, ν distributions on R • Then F µ ⊞ ν ≺ F µ (and F µ ⊞ ν ≺ F ν )

  27. Another basic tool f ( z ) , µ ⊞ ν , etc. H. Bercovici Free convolutions Analytic apparatus Limit theorems Regularity Extensions Omissions vvb • f , g : C + → C analytic • f ≺ g if f ( z ) = g ( h ( z )) for some h : C + → C + analytic (Littlewood subordination) • µ, ν distributions on R • Then F µ ⊞ ν ≺ F µ (and F µ ⊞ ν ≺ F ν ) • Note: subordination functions F < − 1 > ◦ F µ ⊞ ν obviously µ exist at ∞ ; the important point is they continue to C + .

  28. Regularity consequences f ( z ) , µ ⊞ ν , etc. H. Bercovici Free convolutions Analytic apparatus Limit theorems Regularity Extensions Omissions vvb • If d µ/ dt ∈ L p , same is true for µ ⊞ ν

  29. Regularity consequences f ( z ) , µ ⊞ ν , etc. H. Bercovici Free convolutions Analytic apparatus Limit theorems Regularity Extensions Omissions vvb • If d µ/ dt ∈ L p , same is true for µ ⊞ ν • µ ⊞ ν has only finitely many atoms, with total mass < 1

  30. Regularity consequences f ( z ) , µ ⊞ ν , etc. H. Bercovici Free convolutions Analytic apparatus Limit theorems Regularity Extensions Omissions vvb • If d µ/ dt ∈ L p , same is true for µ ⊞ ν • µ ⊞ ν has only finitely many atoms, with total mass < 1 • µ ⊞ ν has no singular continuous component

  31. Regularity consequences f ( z ) , µ ⊞ ν , etc. H. Bercovici Free convolutions Analytic apparatus Limit theorems Regularity Extensions Omissions vvb • If d µ/ dt ∈ L p , same is true for µ ⊞ ν • µ ⊞ ν has only finitely many atoms, with total mass < 1 • µ ⊞ ν has no singular continuous component • the density of µ ⊞ ν is locally analytic a.e.

  32. Regularity consequences f ( z ) , µ ⊞ ν , etc. H. Bercovici Free convolutions Analytic apparatus Limit theorems Regularity Extensions Omissions vvb • If d µ/ dt ∈ L p , same is true for µ ⊞ ν • µ ⊞ ν has only finitely many atoms, with total mass < 1 • µ ⊞ ν has no singular continuous component • the density of µ ⊞ ν is locally analytic a.e. • But: the density of µ ⊞ ν may have points of nondifferentiability even when those of µ and ν don’t

  33. Ignorance f ( z ) , µ ⊞ ν , etc. H. Bercovici Free convolutions Analytic apparatus Limit theorems Regularity Extensions Omissions vvb • µ distribution of R

  34. Ignorance f ( z ) , µ ⊞ ν , etc. H. Bercovici Free convolutions Analytic apparatus Limit theorems Regularity Extensions Omissions vvb • µ distribution of R • ν symmetric to µ ( µ = µ x , ν = µ − x )

  35. Ignorance f ( z ) , µ ⊞ ν , etc. H. Bercovici Free convolutions Analytic apparatus Limit theorems Regularity Extensions Omissions vvb • µ distribution of R • ν symmetric to µ ( µ = µ x , ν = µ − x ) • ρ = µ ∗ ν , λ = µ ⊞ ν ; ρ and λ are symmetric

  36. Ignorance f ( z ) , µ ⊞ ν , etc. H. Bercovici Free convolutions Analytic apparatus Limit theorems Regularity Extensions Omissions vvb • µ distribution of R • ν symmetric to µ ( µ = µ x , ν = µ − x ) • ρ = µ ∗ ν , λ = µ ⊞ ν ; ρ and λ are symmetric • tails of ρ : 1 − ρ (( − t , t )) , t → ∞

  37. Ignorance f ( z ) , µ ⊞ ν , etc. H. Bercovici Free convolutions Analytic apparatus Limit theorems Regularity Extensions Omissions vvb • µ distribution of R • ν symmetric to µ ( µ = µ x , ν = µ − x ) • ρ = µ ∗ ν , λ = µ ⊞ ν ; ρ and λ are symmetric • tails of ρ : 1 − ρ (( − t , t )) , t → ∞ • are comparable to those of µ

  38. Ignorance f ( z ) , µ ⊞ ν , etc. H. Bercovici Free convolutions Analytic apparatus Limit theorems Regularity Extensions Omissions vvb • µ distribution of R • ν symmetric to µ ( µ = µ x , ν = µ − x ) • ρ = µ ∗ ν , λ = µ ⊞ ν ; ρ and λ are symmetric • tails of ρ : 1 − ρ (( − t , t )) , t → ∞ • are comparable to those of µ • what about λ ?

  39. Operator-valued f ( z ) , µ ⊞ ν , etc. H. Bercovici Free convolutions Analytic apparatus Limit theorems Regularity • A algebra, B ⊂ A unital subalgebra Extensions Omissions vvb

  40. Operator-valued f ( z ) , µ ⊞ ν , etc. H. Bercovici Free convolutions Analytic apparatus Limit theorems Regularity • A algebra, B ⊂ A unital subalgebra Extensions Omissions vvb • τ : A → B conditional expectation

  41. Operator-valued f ( z ) , µ ⊞ ν , etc. H. Bercovici Free convolutions Analytic apparatus Limit theorems Regularity • A algebra, B ⊂ A unital subalgebra Extensions Omissions vvb • τ : A → B conditional expectation • projection so τ ( bab ′ ) = b τ ( a ) b ′ for b , b ′ ∈ B

  42. Operator-valued f ( z ) , µ ⊞ ν , etc. H. Bercovici Free convolutions Analytic apparatus Limit theorems Regularity • A algebra, B ⊂ A unital subalgebra Extensions Omissions vvb • τ : A → B conditional expectation • projection so τ ( bab ′ ) = b τ ( a ) b ′ for b , b ′ ∈ B • Freeness can be defined relative to such τ

  43. Operator-valued f ( z ) , µ ⊞ ν , etc. H. Bercovici Free convolutions Analytic apparatus Limit theorems Regularity • A algebra, B ⊂ A unital subalgebra Extensions Omissions vvb • τ : A → B conditional expectation • projection so τ ( bab ′ ) = b τ ( a ) b ′ for b , b ′ ∈ B • Freeness can be defined relative to such τ • x ∈ A has a combinatorial analogue of a distribution τ ( ab 1 ab 2 a · · · b n − 1 a )

  44. Operator-valued f ( z ) , µ ⊞ ν , etc. H. Bercovici Free convolutions Analytic apparatus Limit theorems Regularity • A algebra, B ⊂ A unital subalgebra Extensions Omissions vvb • τ : A → B conditional expectation • projection so τ ( bab ′ ) = b τ ( a ) b ′ for b , b ′ ∈ B • Freeness can be defined relative to such τ • x ∈ A has a combinatorial analogue of a distribution τ ( ab 1 ab 2 a · · · b n − 1 a ) • This is a “Fourier coefficient” of order n

  45. Operator-valued f ( z ) , µ ⊞ ν , etc. H. Bercovici Free convolutions Analytic apparatus Limit theorems Regularity • A algebra, B ⊂ A unital subalgebra Extensions Omissions vvb • τ : A → B conditional expectation • projection so τ ( bab ′ ) = b τ ( a ) b ′ for b , b ′ ∈ B • Freeness can be defined relative to such τ • x ∈ A has a combinatorial analogue of a distribution τ ( ab 1 ab 2 a · · · b n − 1 a ) • This is a “Fourier coefficient” of order n • µ x + y = µ x ⊞ µ y where ⊞ is defined combinatorially

  46. Operator-valued f ( z ) , µ ⊞ ν , etc. H. Bercovici Free convolutions Analytic apparatus Limit theorems Regularity • A algebra, B ⊂ A unital subalgebra Extensions Omissions vvb • τ : A → B conditional expectation • projection so τ ( bab ′ ) = b τ ( a ) b ′ for b , b ′ ∈ B • Freeness can be defined relative to such τ • x ∈ A has a combinatorial analogue of a distribution τ ( ab 1 ab 2 a · · · b n − 1 a ) • This is a “Fourier coefficient” of order n • µ x + y = µ x ⊞ µ y where ⊞ is defined combinatorially • Subordination survives

  47. Analytic despair f ( z ) , µ ⊞ ν , etc. H. Bercovici Free convolutions Analytic apparatus Limit theorems Regularity Extensions Omissions • vvb G x ( z ) = τ (( z − x ) − 1 )

  48. Analytic despair f ( z ) , µ ⊞ ν , etc. H. Bercovici Free convolutions Analytic apparatus Limit theorems Regularity Extensions Omissions • vvb G x ( z ) = τ (( z − x ) − 1 ) • To be viewed as a function of z ∈ B . (If x = x ∗ , z can be anything with positive invertible imaginary part; Siegel half-plane.)

  49. Analytic despair f ( z ) , µ ⊞ ν , etc. H. Bercovici Free convolutions Analytic apparatus Limit theorems Regularity Extensions Omissions • vvb G x ( z ) = τ (( z − x ) − 1 ) • To be viewed as a function of z ∈ B . (If x = x ∗ , z can be anything with positive invertible imaginary part; Siegel half-plane.) • Function theory not sufficiently well developed to undertake the analysis available when B = C .

  50. Analytic despair f ( z ) , µ ⊞ ν , etc. H. Bercovici Free convolutions Analytic apparatus Limit theorems Regularity Extensions Omissions • vvb G x ( z ) = τ (( z − x ) − 1 ) • To be viewed as a function of z ∈ B . (If x = x ∗ , z can be anything with positive invertible imaginary part; Siegel half-plane.) • Function theory not sufficiently well developed to undertake the analysis available when B = C . • Fully matricial analytic functions may be needed for full understanding.

  51. ⊞ λ f ( z ) , µ ⊞ ν , etc. H. Bercovici Free convolutions • X n ( ω ) an n × n random matrix, X n = X ∗ Analytic apparatus n Limit theorems Regularity Extensions Omissions vvb

  52. ⊞ λ f ( z ) , µ ⊞ ν , etc. H. Bercovici Free convolutions • X n ( ω ) an n × n random matrix, X n = X ∗ Analytic apparatus n Limit theorems • With E expected value, τ n = Tr / n , X n has distribution Regularity Extensions given by Omissions vvb G µ Xn ( z ) = E τ n (( zI − X n ) − 1 ) z ∈ C +

  53. ⊞ λ f ( z ) , µ ⊞ ν , etc. H. Bercovici Free convolutions • X n ( ω ) an n × n random matrix, X n = X ∗ Analytic apparatus n Limit theorems • With E expected value, τ n = Tr / n , X n has distribution Regularity Extensions given by Omissions vvb G µ Xn ( z ) = E τ n (( zI − X n ) − 1 ) z ∈ C + • Asymptotic (eigenvalue) distribution of X n : lim n µ X n

  54. ⊞ λ f ( z ) , µ ⊞ ν , etc. H. Bercovici Free convolutions • X n ( ω ) an n × n random matrix, X n = X ∗ Analytic apparatus n Limit theorems • With E expected value, τ n = Tr / n , X n has distribution Regularity Extensions given by Omissions vvb G µ Xn ( z ) = E τ n (( zI − X n ) − 1 ) z ∈ C + • Asymptotic (eigenvalue) distribution of X n : lim n µ X n • X n , Y n independent (classically) with asymptotic distributions µ, ν

  55. ⊞ λ f ( z ) , µ ⊞ ν , etc. H. Bercovici Free convolutions • X n ( ω ) an n × n random matrix, X n = X ∗ Analytic apparatus n Limit theorems • With E expected value, τ n = Tr / n , X n has distribution Regularity Extensions given by Omissions vvb G µ Xn ( z ) = E τ n (( zI − X n ) − 1 ) z ∈ C + • Asymptotic (eigenvalue) distribution of X n : lim n µ X n • X n , Y n independent (classically) with asymptotic distributions µ, ν • Then (spoonful of salt here): X n + Y n has asymptotic distribution µ ⊞ ν .

  56. ⊞ λ f ( z ) , µ ⊞ ν , etc. H. Bercovici Free convolutions • X n ( ω ) an n × n random matrix, X n = X ∗ Analytic apparatus n Limit theorems • With E expected value, τ n = Tr / n , X n has distribution Regularity Extensions given by Omissions vvb G µ Xn ( z ) = E τ n (( zI − X n ) − 1 ) z ∈ C + • Asymptotic (eigenvalue) distribution of X n : lim n µ X n • X n , Y n independent (classically) with asymptotic distributions µ, ν • Then (spoonful of salt here): X n + Y n has asymptotic distribution µ ⊞ ν . • Assume now X n , Y n are n × λ n matrices, and | X n | = ( X ∗ n X n ) 1 / 2 , | Y n | have asymptotic distributions µ, ν

  57. ⊞ λ f ( z ) , µ ⊞ ν , etc. H. Bercovici Free convolutions • X n ( ω ) an n × n random matrix, X n = X ∗ Analytic apparatus n Limit theorems • With E expected value, τ n = Tr / n , X n has distribution Regularity Extensions given by Omissions vvb G µ Xn ( z ) = E τ n (( zI − X n ) − 1 ) z ∈ C + • Asymptotic (eigenvalue) distribution of X n : lim n µ X n • X n , Y n independent (classically) with asymptotic distributions µ, ν • Then (spoonful of salt here): X n + Y n has asymptotic distribution µ ⊞ ν . • Assume now X n , Y n are n × λ n matrices, and | X n | = ( X ∗ n X n ) 1 / 2 , | Y n | have asymptotic distributions µ, ν • Then: | X n + Y n | has asymptotic distribution µ ⊞ λ ν

  58. ⊞ λ f ( z ) , µ ⊞ ν , etc. H. Bercovici Free convolutions • X n ( ω ) an n × n random matrix, X n = X ∗ Analytic apparatus n Limit theorems • With E expected value, τ n = Tr / n , X n has distribution Regularity Extensions given by Omissions vvb G µ Xn ( z ) = E τ n (( zI − X n ) − 1 ) z ∈ C + • Asymptotic (eigenvalue) distribution of X n : lim n µ X n • X n , Y n independent (classically) with asymptotic distributions µ, ν • Then (spoonful of salt here): X n + Y n has asymptotic distribution µ ⊞ ν . • Assume now X n , Y n are n × λ n matrices, and | X n | = ( X ∗ n X n ) 1 / 2 , | Y n | have asymptotic distributions µ, ν • Then: | X n + Y n | has asymptotic distribution µ ⊞ λ ν • many results extend to this operation, questions remain

  59. Boolean f ( z ) , µ ⊞ ν , etc. H. Bercovici Free convolutions Analytic apparatus • ( A , τ ) probability space, B , C ⊂ A subalgebras not Limit theorems Regularity containing the unit. Extensions Omissions vvb

  60. Boolean f ( z ) , µ ⊞ ν , etc. H. Bercovici Free convolutions Analytic apparatus • ( A , τ ) probability space, B , C ⊂ A subalgebras not Limit theorems Regularity containing the unit. Extensions Omissions vvb • B and C are Boolean independent if for b j ∈ B , c j ∈ C , τ ( · b 1 c 1 b 2 c 2 · · · b n c n · ) = · τ ( b 1 ) τ ( c 1 ) · · · τ ( b n ) τ ( c n ) ·

  61. Boolean f ( z ) , µ ⊞ ν , etc. H. Bercovici Free convolutions Analytic apparatus • ( A , τ ) probability space, B , C ⊂ A subalgebras not Limit theorems Regularity containing the unit. Extensions Omissions vvb • B and C are Boolean independent if for b j ∈ B , c j ∈ C , τ ( · b 1 c 1 b 2 c 2 · · · b n c n · ) = · τ ( b 1 ) τ ( c 1 ) · · · τ ( b n ) τ ( c n ) · • µ b + c = µ b ⊎ µ c for b ∈ B , c ∈ C

  62. Boolean f ( z ) , µ ⊞ ν , etc. H. Bercovici Free convolutions Analytic apparatus • ( A , τ ) probability space, B , C ⊂ A subalgebras not Limit theorems Regularity containing the unit. Extensions Omissions vvb • B and C are Boolean independent if for b j ∈ B , c j ∈ C , τ ( · b 1 c 1 b 2 c 2 · · · b n c n · ) = · τ ( b 1 ) τ ( c 1 ) · · · τ ( b n ) τ ( c n ) · • µ b + c = µ b ⊎ µ c for b ∈ B , c ∈ C • analytic calculation: F µ ⊎ ν ( z ) − z = [ F µ ( z ) − z ] + [ F ν ( z ) − z ]

  63. Boolean f ( z ) , µ ⊞ ν , etc. H. Bercovici Free convolutions Analytic apparatus • ( A , τ ) probability space, B , C ⊂ A subalgebras not Limit theorems Regularity containing the unit. Extensions Omissions vvb • B and C are Boolean independent if for b j ∈ B , c j ∈ C , τ ( · b 1 c 1 b 2 c 2 · · · b n c n · ) = · τ ( b 1 ) τ ( c 1 ) · · · τ ( b n ) τ ( c n ) · • µ b + c = µ b ⊎ µ c for b ∈ B , c ∈ C • analytic calculation: F µ ⊎ ν ( z ) − z = [ F µ ( z ) − z ] + [ F ν ( z ) − z ] • much of the limit theory is preserved, but

  64. Boolean f ( z ) , µ ⊞ ν , etc. H. Bercovici Free convolutions Analytic apparatus • ( A , τ ) probability space, B , C ⊂ A subalgebras not Limit theorems Regularity containing the unit. Extensions Omissions vvb • B and C are Boolean independent if for b j ∈ B , c j ∈ C , τ ( · b 1 c 1 b 2 c 2 · · · b n c n · ) = · τ ( b 1 ) τ ( c 1 ) · · · τ ( b n ) τ ( c n ) · • µ b + c = µ b ⊎ µ c for b ∈ B , c ∈ C • analytic calculation: F µ ⊎ ν ( z ) − z = [ F µ ( z ) − z ] + [ F ν ( z ) − z ] • much of the limit theory is preserved, but • generally δ s ⊎ δ t � = δ s + t

  65. Boolean f ( z ) , µ ⊞ ν , etc. H. Bercovici Free convolutions Analytic apparatus • ( A , τ ) probability space, B , C ⊂ A subalgebras not Limit theorems Regularity containing the unit. Extensions Omissions vvb • B and C are Boolean independent if for b j ∈ B , c j ∈ C , τ ( · b 1 c 1 b 2 c 2 · · · b n c n · ) = · τ ( b 1 ) τ ( c 1 ) · · · τ ( b n ) τ ( c n ) · • µ b + c = µ b ⊎ µ c for b ∈ B , c ∈ C • analytic calculation: F µ ⊎ ν ( z ) − z = [ F µ ( z ) − z ] + [ F ν ( z ) − z ] • much of the limit theory is preserved, but • generally δ s ⊎ δ t � = δ s + t • There is a multiplicative analogue

  66. Monotonic f ( z ) , µ ⊞ ν , etc. H. Bercovici Free convolutions • ( A , τ ) probability space, B , C ⊂ A subalgebras not Analytic apparatus Limit theorems containing the unit. Regularity Extensions Omissions vvb

  67. Monotonic f ( z ) , µ ⊞ ν , etc. H. Bercovici Free convolutions • ( A , τ ) probability space, B , C ⊂ A subalgebras not Analytic apparatus Limit theorems containing the unit. Regularity Extensions • B and C are monotone independent if for b j ∈ B , c j ∈ C , Omissions vvb τ ( b 1 c 1 ) = τ ( c 1 b 1 ) = τ ( b 1 ) τ ( c 1 ) , τ ( c 1 b 1 c 2 ) = τ ( c 1 ) τ ( b 1 ) τ ( c 2 ) , b 1 c 1 b 2 = τ ( c 1 ) b 1 b 2 , and

  68. Monotonic f ( z ) , µ ⊞ ν , etc. H. Bercovici Free convolutions • ( A , τ ) probability space, B , C ⊂ A subalgebras not Analytic apparatus Limit theorems containing the unit. Regularity Extensions • B and C are monotone independent if for b j ∈ B , c j ∈ C , Omissions vvb τ ( b 1 c 1 ) = τ ( c 1 b 1 ) = τ ( b 1 ) τ ( c 1 ) , τ ( c 1 b 1 c 2 ) = τ ( c 1 ) τ ( b 1 ) τ ( c 2 ) , b 1 c 1 b 2 = τ ( c 1 ) b 1 b 2 , and • µ b + c = µ b ⊲ µ c b ∈ B , c ∈ C

  69. Monotonic f ( z ) , µ ⊞ ν , etc. H. Bercovici Free convolutions • ( A , τ ) probability space, B , C ⊂ A subalgebras not Analytic apparatus Limit theorems containing the unit. Regularity Extensions • B and C are monotone independent if for b j ∈ B , c j ∈ C , Omissions vvb τ ( b 1 c 1 ) = τ ( c 1 b 1 ) = τ ( b 1 ) τ ( c 1 ) , τ ( c 1 b 1 c 2 ) = τ ( c 1 ) τ ( b 1 ) τ ( c 2 ) , b 1 c 1 b 2 = τ ( c 1 ) b 1 b 2 , and • µ b + c = µ b ⊲ µ c b ∈ B , c ∈ C • analytic calculation: F µ⊲ν = F µ ◦ F ν

  70. Monotonic f ( z ) , µ ⊞ ν , etc. H. Bercovici Free convolutions • ( A , τ ) probability space, B , C ⊂ A subalgebras not Analytic apparatus Limit theorems containing the unit. Regularity Extensions • B and C are monotone independent if for b j ∈ B , c j ∈ C , Omissions vvb τ ( b 1 c 1 ) = τ ( c 1 b 1 ) = τ ( b 1 ) τ ( c 1 ) , τ ( c 1 b 1 c 2 ) = τ ( c 1 ) τ ( b 1 ) τ ( c 2 ) , b 1 c 1 b 2 = τ ( c 1 ) b 1 b 2 , and • µ b + c = µ b ⊲ µ c b ∈ B , c ∈ C • analytic calculation: F µ⊲ν = F µ ◦ F ν • some of the limit theory is preserved

  71. Monotonic f ( z ) , µ ⊞ ν , etc. H. Bercovici Free convolutions • ( A , τ ) probability space, B , C ⊂ A subalgebras not Analytic apparatus Limit theorems containing the unit. Regularity Extensions • B and C are monotone independent if for b j ∈ B , c j ∈ C , Omissions vvb τ ( b 1 c 1 ) = τ ( c 1 b 1 ) = τ ( b 1 ) τ ( c 1 ) , τ ( c 1 b 1 c 2 ) = τ ( c 1 ) τ ( b 1 ) τ ( c 2 ) , b 1 c 1 b 2 = τ ( c 1 ) b 1 b 2 , and • µ b + c = µ b ⊲ µ c b ∈ B , c ∈ C • analytic calculation: F µ⊲ν = F µ ◦ F ν • some of the limit theory is preserved • δ s ⊲ δ t � = δ s + t

  72. Monotonic f ( z ) , µ ⊞ ν , etc. H. Bercovici Free convolutions • ( A , τ ) probability space, B , C ⊂ A subalgebras not Analytic apparatus Limit theorems containing the unit. Regularity Extensions • B and C are monotone independent if for b j ∈ B , c j ∈ C , Omissions vvb τ ( b 1 c 1 ) = τ ( c 1 b 1 ) = τ ( b 1 ) τ ( c 1 ) , τ ( c 1 b 1 c 2 ) = τ ( c 1 ) τ ( b 1 ) τ ( c 2 ) , b 1 c 1 b 2 = τ ( c 1 ) b 1 b 2 , and • µ b + c = µ b ⊲ µ c b ∈ B , c ∈ C • analytic calculation: F µ⊲ν = F µ ◦ F ν • some of the limit theory is preserved • δ s ⊲ δ t � = δ s + t • there is a multiplicative version of the convolution

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend