compass a facility to study qcd
play

COMPASS - a facility to study QCD Eva-Maria Kabu, Institut f ur - PowerPoint PPT Presentation

COMPASS - a facility to study QCD Eva-Maria Kabu, Institut f ur Kernphysik, Mainz University for the Compass collaboration Hadron 2011 M unchen, 13.-17.11.2011 Compass experiment What we have done What we want to do


  1. COMPASS - a facility to study QCD Eva-Maria Kabuß, Institut f¨ ur Kernphysik, Mainz University for the Compass collaboration Hadron 2011 M¨ unchen, 13.-17.11.2011 – Compass experiment – What we have done – What we want to do COMPASS

  2. What have we done COMPASS Compass is data taking since 2002 studying (E, p ) ’ ’ Nucleon spin puzzle: S N = 1 2 = 1 2 ∆Σ + ∆ G + L (E, p) e q • muon scattering on polarised p(NH 3 ) and d( 6 LiD) * γ h u with long. and transv. target polarisation N d h u π • addendum in 2010 (transv. p) and 2011 (long. p) • all three leading twist PDFs investigated ( f 1 , g 1 , h 1 ) π + Results: quark spin responsible for 30% of nucleon spin gluon contribution small in x range covered hardly any information on orbital angular momentum Hadron spectroscopy • 190 GeV/ c hadron beams ( π , p, K) on unpol. targets (liquid H 2 , Pb, Ni, Cu ,W) • searches for exotics, hybrids and glueballs • pion polarisabilities E. Kabuß, Munich, 14.6.2011 1

  3. What will we do COMPASS Improve the 1-dimensional picture of the nucleon Generalized parton distribution (GPD) longitudinal momentum structure plus transverse spatial structure accessible in exclusive reaction like DVCS or DVMP Flavour separation and fragmentation in semi-inclusive deep inelastic scattering (SIDIS) improvement of strange quark distribution and fragmentation Transverse momentum dependent distributions (TMD) dynamic picture using intrinsic transverse momenta of partons accessible in SIDIS and Drell-Yan processes QCD at very low momentum transfers using Primakoff reactions to access inverse Compton scattering pion/kaon polarisabilities, testing chiral perturbation theory Compass II proposal: submitted in May 2010 for 5 years of data taking in the first phase approved in December 2010 for initially 3 years of data taking E. Kabuß, Munich, 14.6.2011 2

  4. SPS proton beam: 1.4 10 13 /spill of 4.8s, 400 GeV/c COMPASS � Secondary hadron beams ( � ������������� 8 /spill, 150-270 GeV/c � Tertiary muon beam (80% pol): 2.10 8 /spill, 100-200 GeV/c -> Luminosity ~ 5 × 10 32 cm -2 s -1 with polarised targets COMPASS LHC CNGS Gran Sasso 732 kms SPS 3

  5. SPS proton beam: 1.4 10 13 /spill of 4.8s, 400 GeV/c COMPASS � Secondary hadron beams ( � ������������� 8 /spill, 150-270 GeV/c � Tertiary muon beam (80% pol): 2.10 8 /spill, 100-200 GeV/c -> Luminosity ~ 5 × 10 32 cm -2 s -1 with polarised targets COMPASS LHC CNGS Gran Sasso 732 kms SPS high energy beam(s), broad kinematic range, large angular acceptance 4

  6. COMPASS spectrometer Polarised target COMPASS 1m 3 He−Precooler Superconducting Solenoid Muon Wall 2 Acceptance (70mrad) E/ CAL2 H Dilution refrigerator Targets Trigger Hodoscopes SM2 ) Muon Wall 1 COMPASS 2002-03 data 2 6 (GeV 10 E/ CAL1 H 10 RICH µ SM1 2 Q 1 5 10 Target -1 10 4 10 -2 10 3 10 -3 10 target material: 6 LiD, NH 3 polarisation: 50%, 90% -4 2 10 10 -6 -5 -3 -4 -2 -1 10 10 10 10 10 10 1 x E. Kabuß, Munich, 14.6.2011 5

  7. Primakoff experiments with π, K π − Z → π − Zγ π θ π π chiral perturbation theory predicts low energy behaviour Q 2 θ E γ γ � d σ πγ � + C · s − m 2 d σ πγ π = P ( α π , β π ) (A,Z) (A,Z) dΩ cm dΩ cm s 2 point Primakoff P ( α π , β π ) = (1 − cos θ cm ) 2 ( α π − β π )+(1+cos θ cm ) 2 ( α π + β π ) s 2 m 4 π +(1 − cos θ cm ) 3 ( α 2 − β 2 )( s − m 2 π ) 2 24 s γ • deviation from pointlike due to pion polarisabilities θ • measurements: α π − β π (at backward angles), α π + β π γ π 2-loop chiral prediction π α π − β π = (5 . 7 ± 1 . 0)10 − 4 fm 3 Inverse Compton α π − β π from 4 to 14 · 10 − 4 fm 3 experiments: E. Kabuß, Munich, 14.6.2011 6

  8. Pion polarisability measurement 0.4 b] µ 0.3 [ CM Ω /d 0.2 2 s=3m σ π d E < 20 GeV γ 2 s=5m π 0.1 2 s=8m • effect increases with s 2 π 2 • effects due to α π − β π much s=15m π larger than for α π + β π - - - = 3.00, = -2.86 α β π π 0.02 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 cos θ CM unique at Compass : • kaon component in hadron beam: kaon polarisability accessible • availability of a muon beam (point like) for comparison and systematics • switching between pion and muon beam within few hours possible E. Kabuß, Munich, 14.6.2011 7

  9. Projections for polarisabilities COMPASS • already two (test)measurements performed, clear signal from Primakoff events Number of Events COMPASS 2004 Hadron − Pb 3.0 mm π − Pb 2.0+1.0 mm π − Pb 1.6 mm π 4 10 − Cu 3.55 mm π − C 23.5 mm π − Pb 2.0+1.0 mm µ 3 10 2 10 10 1 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01 2 2 Q [(GeV/c) ] • expected precision of the new measurement: in 120 d α π − β π α π + β π α 2 − β 2 ( 10 − 4 fm 3 ) ( 10 − 4 fm 3 ) ( 10 − 4 fm 5 ) 90 d with π , 30 d of µ beam 2-loop ChPT prediction 5 . 70 ± 1 . 0 . 016 ± 0 . 10 16 Compass sensitivity ± 0 . 66 ± 0 . 25 ± 1 . 94 E. Kabuß, Munich, 14.6.2011 8

  10. Generalised parton distributions γ γ * q q’ Factorisation for x − ξ x + ξ hard Q 2 large, t < 1 GeV 2 soft GPDs p p’ t = − ∆ 2 H f , E f , � H f , � E f ( x, ξ, t ) • generalised parton distributions for quarks • limits: q ( x ) = H ( x, 0 , 0) normal PDF � F ( t ) = d x H ( x, ξ, t ) elastic form factor • Ji’s sumrule � 1 � � J f = 1 H f ( x, ξ, t ) + E f ( x, ξ, t ) lim d x x 2 t → 0 − 1 J f : total angular momentum contribution of quark f E. Kabuß, Munich, 14.6.2011 9

  11. Nucleon tomography • GPDs allow simultaneous measurement of longitudinal momentum and transverse spatial structure t = − ∆ 2 • for ξ → 0 : ⊥ purely transverse and � d 2 ∆ ⊥ (2 π ) 2 e − i ∆ ⊥ · b ⊥ H f ( x, 0 , − ∆ 2 q f ( x, b ⊥ ) = ⊥ ) • b ⊥ distance to center of momentum ( b in figure is b ⊥ ) E. Kabuß, Munich, 14.6.2011 10

  12. Why GPDs at Compass ? COMPASS • CERN high energy muon beam: • unique kinematic range – 100–160 GeV, 80% polarisation between HERA and – µ + and µ − with opposite polarisation HERMES/JLab – intermediate x : Q 2 (GeV 2 ) 20 COMPASS 160 GeV HERMES 27 GeV = ⇒ sea and valence quarks JLab 11 GeV ZEUS +H1 – high x limit from acceptance 10 9 8 – Q 2 up to 8 GeV 2 7 6 = ⇒ limit from cross section 5 with L = 10 32 cm − 2 s − 1 4 3 • planned measurements: 2 – deeply virtual Compton scattering COMPASS y=0.9 – deeply virtual meson production 1 y=0.05 -2 -1 10 10 1 x Phase 1 : 2.5 m long unpolarised liquid H 2 target = ⇒ GPD H Phase 2 : transversely polarised liquid NH 3 target = ⇒ GPD E E. Kabuß, Munich, 14.6.2011 11

  13. Experimental requirements COMPASS • two competing processes: DVCS and BH • Bethe-Heitler dominates at low x , µp − → µγp used a reference yield • measurement with µ + and µ − with opposite polarisation S CS,U ≡ d σ + ↓ + d σ −↓ D CS,U ≡ d σ + ↓ − d σ −↑ • yield Re(H) and Im(H) • additionally deeply virtual meson production Experimental set-up • 2.5 m long liquid hydrogen target • 4 m long recoil proton detector (2 layers) • ’hermetic’ coverage with electro- magnetic. calorimetry E. Kabuß, Munich, 14.6.2011 12

  14. Test measurement 2009 COMPASS • data taking with µ + (8 times more stat.) and µ − at about nominal intensity • 40 cm liquid H 2 target and small recoil proton detector • measure BH events plus relative DVCS and DVMP contributions • comparison of µ + and µ − data: µ − flux is factor of 3 lower at 160 GeV = ⇒ limitation on overall luminosity 0.005 < x < 0.01 0.01 < x < 0.03 x > 0.03 Bj Bj Bj nb of events nb of events nb of events 278 events |BH+DVCS| 2 134 events |BH+DVCS| 2 54 events |BH+DVCS| 2 35 8 80 2 2 2 |BH| |BH| |BH| 7 70 30 6 60 25 5 50 20 PRELIMINARY PRELIMINARY PRELIMINARY 4 40 15 3 30 10 2 20 5 10 1 0 0 0 -150 -100 -50 0 50 100 150 -150 -100 -50 0 50 100 150 -150 -100 -50 0 50 100 150 (deg) (deg) (deg) φ φ φ ⇒ clear DVCS signal observed at Q 2 > 1 GeV 2 , x > 0 . 03 = E. Kabuß, Munich, 14.6.2011 13

  15. Projected results COMPASS projections with • Transverse imaging : 2 years of data B ( x ) ∼ 1 / 2 � r 2 ⊥ ( x ) � ε global = 10 % no model dependence L = 1222 pb − 1 • Azimuthal dependence : comparison to different models ⇒ c I = 1 ∝ Re ( F 1 H ) Beam Charge and Spin Asymmetry E µ =160 GeV 1 Q 2 4 GeV 2 0.03 x B 0.07 ≤ ≤ ≤ ≤ 0.3 8 B (GeV -2 ) VGG Reggeized (x,t)-correlation 0.2 VGG Factorized (x,t)-dependence 6 α ' = 0.125 Mueller fit on world data 0.1 (with JLab Hall A) 4 α ' = 0.26 < Q 2 > = 3.2 GeV 2 (without JLab Hall A) ZEUS < Q 2 > = 4 GeV 2 H1-HERA I 0 < Q 2 > = 8 GeV 2 2 H1-HERA II < Q 2 > = 2 GeV 2 -0.1 COMPASS 0 280 days at 160 GeV -0.2 -2 0 20 40 60 80 100 120 140 160 180 -4 -3 -2 -1 φ 10 10 10 10 E. Kabuß, Munich, 14.6.2011 14

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend