comparison of the tdcr method and the ciemat nist method
play

Comparison of the TDCR method and the CIEMAT/NIST method for the - PowerPoint PPT Presentation

Comparison of the TDCR method and the CIEMAT/NIST method for the activity determination of beta emitting nuclides Ole Nhle and Karsten Kossert Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany LSC 2010, Advances in Liquid


  1. Comparison of the TDCR method and the CIEMAT/NIST method for the activity determination of beta emitting nuclides Ole Nähle and Karsten Kossert Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany LSC 2010, Advances in Liquid Scintillation Spectrometry, Paris, 6-10 September 2010 Physikalisch-Technische Bundesanstalt

  2. Motivation • CIEMAT/NIST and TDCR are based on the same free parameter model • A systematic comparison is difficult (different counters, different software, different parameters) • At PTB both methods are applied and the same software routines are used • Pure β -emitters should be a simple test Comparison of TDCR and CN for β emitters O. Nähle and K. Kossert

  3. Free parameter model Basic assumptions: • Statistical distribution of emitted photoelectrons at the photo cathode of the PMT (e.g. Poisson distribution): ' − ' ( ) ( ) x m E m E e = ' ( , ( )) P x m E ! x with number of electrons x energy deposit in the scintillator E’ m ( E’ ) mean number of electrons • low PMT noise (coincidence circuit) • threshold adjustment (single electron peak) Comparison of TDCR and CN for β emitters O. Nähle and K. Kossert

  4. Free parameter model Counting efficiency ' − ε = − = − ' ( ) 1 ( 0 , ( ) ) 1 m E pq P m E pq e with m ( E’ ) pq = EQ ( E )/( nM ) Q ( E ) non-linear response function of the scintillator 1 dE ∫ E = Q(E) + ⋅ 1 / 0 E k dE dx B is a free parameter (sometimes called “figure M of merit”); it corresponds to the average energy which is required to produce photoelectron 1/ M average number of photoelectrons per energy deposited in keV Comparison of TDCR and CN for β emitters O. Nähle and K. Kossert

  5. Free parameter model electron spectrum S ( E ) E max ∫ − ε = − ( )/ ( )(1 ) EQ E M S E e dE 1 PMT: 1 0 E max ∫ − ε = − ( ) / 2 2 ( )( 1 ) EQ E M S E e dE 2 PMTs: 2 0 E max ∫ ε = − − ( ) / 3 3 ( )( 1 ) EQ E M S E e dE 3 PMTs: T 0 logical sum of double coincidences in a system with 3 PMTs: E max ∫ − − ε = − − − ( )/3 2 ( )/3 3 ( )(3(1 ) 2(1 ) ) EQ E M EQ E M S E e e dE D 0 Comparison of TDCR and CN for β emitters O. Nähle and K. Kossert

  6. Free parameter model CIEMAT/NIST method (2 PMTs) : E max ∫ ε = − − ( ) / 2 2 ( )( 1 ) EQ E M S E e dE 2 0 The free parameter M is obtained from a measurement of a tracer radionuclide (e.g. 3 H) under same experimental conditions. Usually external quenching indicators are used for the efficiency transfer. Comparison of TDCR and CN for β emitters O. Nähle and K. Kossert

  7. Free parameter model TDCR method (3 PMTs) : E max ∫ − ε = − ( ) / 3 3 ( )( 1 ) EQ E M S E e dE T 0 E = ∫ max ε − − − − − ( ) / 3 2 ( ) / 3 3 ( ) 3 (( 1 ) 2 ( 1 ) ) EQ E M EQ E M S E e e dE D 0 The free parameter is derived from the ratio of the experimental counting rates ε R = = T T TDCR ε R D D Comparison of TDCR and CN for β emitters O. Nähle and K. Kossert

  8. Nuclides Radionuclides measured at PTB since 2002 using CIEMAT/NIST + … and CIEMAT/NIST + TDCR + … H-3 , Be-10, C-14, F-18 , Na-22, P-32 , P-33 , S-35 , Cl-36 , K-40, Ca-41, Ca-45 , Cr-51, Mn-54, Fe-55, Co-58, Fe-59, Co-60, Ni-63 , Cu-64, Zn-65, Ga-68, Ge-68/Ga-68, Se-79, Sr-85, Rb-87, Y-88, Sr-89 , Sr- 90/Y-90 , Nb-93m, Zr-95, Tc-99 , Cd-109, In-111, Sn- 113, Cd-113m , In-114m, I-123, Sb-124, I-124, Sb-125 , I-125, I-129, I-131 , Cs-134, Cs-137, Ce-139, Ce-141 , Pm-147 , Sm- 147 , Ho-166m, Lu-176, Lu-177 , Re-186, Ir-192, Tl- 204, Po-208, Pb-210, Ac-227, Th-228, U-233, Np- Comparison of TDCR and CN for β emitters O. Nähle and K. Kossert 237 Pu 238 Am 241 Pu 239 Pu 241 Cm 244

  9. Experimental details • Sample composition: 15 mL Ultima Gold TM + 1 mL water, glass vials, quenching agent: nitromethane • Preparation by difference weighing of a pycnometer with traceable balances (typical mass of active solution: 30 mg) • Background sample was prepared with the same composition • Solutions were checked for impurities by means of gamma-ray spectrometry and long-term LS measurements Comparison of TDCR and CN for β emitters O. Nähle and K. Kossert

  10. Detectors: CIEMAT/NIST Wallac 1414 PerkinElmer TriCarb 2800 Crucial points • Threshhold adjustments • Features of signal processing • Anti-coincidence detectors • Coincidence logic is not transparent Comparison of TDCR and CN for β emitters O. Nähle and K. Kossert

  11. Detector: TDCR Crucial points • Threshhold adjustments by user • Coincidence and deadtime logic well known (MAC3) • No mass processing of samples Comparison of TDCR and CN for β emitters O. Nähle and K. Kossert

  12. Nuclides and nuclear data (DDEP) Radio- Maximum Shape-factor Nature nuclide energy in keV function C ( W ) 32 P 1711 Allowed 1 33 P 249 Allowed 1 35 S 167 Allowed 1 45 Ca 256 Allowed 1 63 Ni 67 Allowed 1 1 st forbidden 89 Sr p 2 + q 2 1495 unique 1 st forbidden 90 Y p 2 + q 2 2280 unique 2 nd forbidden 99 Tc 0.54· p 2 + q 2 294 1 st forbidden 147 Pm 225 1+0.3/ W Comparison of TDCR and CN for β emitters O. Nähle and K. Kossert

  13. Analysis 63 Ni 0.005 99 Tc 0.004 counts in arbitrary units 33 P 45 Ca 35 S 0.003 147 Pm 0.002 89 Sr 0.001 32 P 90 Y 0 0 200 400 600 800 1000 channel number Wallac counter with logarithmic amplification Comparison of TDCR and CN for β emitters O. Nähle and K. Kossert

  14. Uncertainty budget 33 P u(a)/a in % Component CIEMAT/ TDCR NIST Statistics (6 samples; ≥ 8 repetitions per counter) 0.02 0.01 Weighing 0.08 0.08 Dead time 0.10 0.08 Background 0.03 0.03 Time of measurements (starting time and duration (life- 0.01 0.01 time)) Adsorption 0.05 0.05 Radionuclide impurities (none detected) 0.05 0.05 3 H activity/TDCR value and fit 0.07 0.02 Decay data (endpoint energy and beta shape-factor 0.06 0.03 function) Ionization quenching 0.20 0.17 Quenching indicator ( SQP ( E ), tSIE ) 0.01 -- Decay correction 0.13 0.10 Square root of the sum of quadratic components 0.30 0.24 Comparison of TDCR and CN for β emitters O. Nähle and K. Kossert

  15. Analysis: Overall uncertainties TDCR CIEMAT/NIST Radionuclid E β ,max in e keV u(a)/a in % 90 Y 0.12 0.16 2280 32 P 0.23 0.25 1711 89 Sr 0.25 0.26 1495 99 Tc 0.27 0.45 294 45 Ca 0.25 0.27 256 33 P 0.24 0.30 249 147 Pm 0.35 0.35 225 35 S 0.33 0.29 167 63 Ni 0.97 0.58 67 Comparison of TDCR and CN for β emitters O. Nähle and K. Kossert

  16. Analysis CIEMAT/ Unweighted TDCR Radio- kB in ( a TDCR - NIST mean activity nuclide cm/MeV a CN )/ a TDCR in % a mean in kBq/g a in kBq/g 0.0075 191.93 191.96 -0.02 191.95 90 Y 0.0110 191.95 191.95 0.00 191.95 0.0075 198.86 198.76 0.05 198.81 32 P 0.0110 198.88 198.75 0.07 198.82 0.0075 189.45 189.16 0.15 189.31 89 Sr 0.0110 189.49 189.14 0.18 189.32 0.0075 169.22 169.29 -0.04 169.26 99 Tc 0.0110 169.46 169.16 0.18 169.31 0.0075 182.65 182.45 0.11 182.55 45 Ca 0.0110 182.97 182.23 0.40 182.60 0.0075 243.40 243.55 -0.06 243.48 33 P 0.0110 243.81 243.08 0.30 243.45 0.0075 9.923 9.914 0.09 9.919 147 Pm 0.0110 9.948 9.899 0.49 9.924 0.0075 191.67 191.30 0.19 191.49 35 S 0.0110 192.23 190.94 0.67 191.59 0.0075 11.04 10.95 0.82 11.00 63 Ni 0.0110 11.14 10.91 2.06 11.03 Comparison of TDCR and CN for β emitters O. Nähle and K. Kossert

  17. Analysis: kB-value Unweighted CIEMAT/ TDCR Radio- kB in ( a TDCR - a CN )/ a TDCR mean activity NIST nuclide cm/MeV in % a mean in a in kBq/g kBq/g 0.0075 189.45 189.16 0.15 189.31 89 Sr 0.0110 189.49 189.14 0.18 189.32 0.0075 11.04 10.95 0.82 11.00 63 Ni 0.0110 11.14 10.91 2.06 11.03 • A change in kB-value has inverse effect for TDCR and CIEMAT/NIST • Unweighted mean is robust against changes in kB • Applying both methods the model dependence can be reduced • Our analyses seem to favour kB =0.0075 cm/MeV Comparison of TDCR and CN for β emitters O. Nähle and K. Kossert

  18. Analysis: shape-factor Radio- Maximum Shape-factor Nature Reference nuclide Energy in keV function C ( W ) Reich and 2 nd forbidden 99 Tc 0.54· p 2 + q 2 293.8(14) Schüpferling (1974) • Changing C(W) to 1: • TDCR result increases by 0.05% • CIEMAT/NIST increases by 0.95% • No compensation but clear indication that C(W) =1 is not a suitable shape factor for 99 Tc Comparison of TDCR and CN for β emitters O. Nähle and K. Kossert

  19. Summary and Outlook • A combination of TDCR and CIEMAT increases the understanding of free parameter models • Systematic uncertainties may be identified and partly cancel out • Tests with the Hidex TDCR-system are promising • Extend investigation to electron capture nuclides • Establish sample changer with γ -detector Comparison of TDCR and CN for β emitters O. Nähle and K. Kossert

  20. TDCR sample changer Light-tight housing γ -Detector Comparison of TDCR and CN for β emitters O. Nähle and K. Kossert

  21. TDCR Sample changer Lead shield Optical chamber Sample depot Comparison of TDCR and CN for β emitters O. Nähle and K. Kossert

  22. Sample changer Comparison of TDCR and CN for β emitters O. Nähle and K. Kossert

  23. TDCR Physikalisch-Technische Bundesanstalt

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend