combinatorics of wick products
play

Combinatorics of Wick products Michael Anshelevich May 13, 2004 S - PDF document

Combinatorics of Wick products Michael Anshelevich May 13, 2004 S CHR ODINGER REPRESENTATION X ( x ) = x ( x ) , X = x P ( x ) = i ( x ) , P = i x [ X, P ] = XP PX = i Id Define the creation and


  1. Combinatorics of Wick products Michael Anshelevich May 13, 2004 S CHR ¨ ODINGER REPRESENTATION Xψ ( x ) = xψ ( x ) , X = x Pψ ( x ) = − i � ψ ′ ( x ) , P = − i � ∂ x [ X, P ] = XP − PX = i � Id Define the “creation and annihilation” or “raising and lower- ing” operators A + = 1 2( X − iP ) = 1 2( x − � ∂ x ) A − = 1 2( X + iP ) = 1 2( x + � ∂ x ) 1

  2. Thus X = A + + A − , P = i ( A + − A − ) . Then [ A − , A + ] = 1 4[ X, − iP ] + 1 4[ iP, X ] = ( � / 2)Id . Mathematics: set � / 2 = 1 . n - DIMENSIONAL CASE X j ψ = x j ψ P j ψ = − i∂ x j ψ X j ’s commute among themselves. j = 1 j = 1 A + A − 2( X j − iP j ) , 2( X j + iP j ) , j , A + [ A − k ] = δ jk . 2

  3. F OCK REPRESENTATION Let H 0 = real Hilbert space, for example R k . Let H = its complexification, for example C k . Denote H ⊗ n = H ⊗ s H ⊗ . . . ⊗ H , H ⊗ 0 = C Ω , Ω = � �� � n special vector. n = number of particles, Ω = zero particles, vacuum vector. Define the symmetric Fock space ∞ � H ⊗ n F s ( H ) = n =0 = C Ω ⊕ H ⊕ ( H ⊗ s H ) ⊕ ( H ⊗ s H ⊗ s H ) ⊕ . . . . A Hilbert space, with an inner product making levels orthog- onal. 3

  4. For f ∈ H 0 , define a + ( f ) , a − ( f ) : F s ( H ) → F s ( H ) a + ( f ) Ω = f, a + ( f ) ( g 1 ⊗ . . . ⊗ g n ) = f ⊗ g 1 ⊗ . . . ⊗ g n , a − ( f ) Ω = 0 , a − ( f ) g = � f, g � , n � a − ( f ) ( g 1 ⊗ . . . ⊗ g n ) = � f, g k � g 1 ⊗ . . . ⊗ ˆ g k ⊗ . . . ⊗ g n . k =1 Note a − ( f ) a + ( h )( g 1 ⊗ . . . ⊗ g n ) = � f, h � ( g 1 ⊗ . . . ⊗ g n ) + a + ( h ) a − ( f )( g 1 ⊗ . . . ⊗ g n ) , so [ a − ( f ) , a + ( h )] = � f, h � Id . If f 1 , . . . , f n = orthonormal basis for H 0 , � � [ a − ( f j ) , a + ( f k )] = f j , f k = δ jk . 4

  5. Denote X ( f ) = a + ( f ) + a − ( f ) . Thus a + ( f ) , a − ( h ) in general do not commute. But the po- sition operators do: [ X ( f ) , X ( h )] = [ a + ( f ) , a − ( h )] + [ a − ( f ) , a + ( h )] = � f, h � − � h, f � = 0 since f, g real . Question 1. � Ω , X ( f 1 ) X ( f 2 ) . . . X ( f n ) Ω � =? This equals to � � � � � � a + ( f n ) + a − ( f n ) Ω , a + ( f 1 ) + a − ( f 1 ) Ω . . . � � � Ω , a ε (1) ( f 1 ) . . . a ε ( n ) ( f n ) Ω = , ε ∈ I ( n ) I ( n ) = { + , −} n = { ε : ε ( i ) = + or −} . Question 0 . � � Ω , a ε (1) ( f 1 ) . . . a ε ( n ) ( f n ) Ω =? 5

  6. Example 1. � � Ω , a − ( f 1 ) a − ( f 2 ) a + ( f 3 ) a − ( f 4 ) a + ( f 5 ) a + ( f 6 ) Ω f 6 f 5 ⊗ f 6 � f 4 , f 5 � f 6 + � f 4 , f 6 � f 5 � f 4 , f 5 � f 3 ⊗ f 6 + � f 4 , f 6 � f 3 ⊗ f 5 � f 4 , f 5 � � f 2 , f 3 � f 6 + � f 4 , f 6 � � f 2 , f 3 � f 5 + � f 4 , f 5 � � f 2 , f 6 � f 3 + � f 4 , f 6 � � f 2 , f 5 � f 3 � f 4 , f 5 � � f 2 , f 3 � � f 1 , f 6 � + � f 4 , f 6 � � f 2 , f 3 � � f 1 , f 5 � + � f 4 , f 5 � � f 2 , f 6 � � f 1 , f 3 � + � f 4 , f 6 � � f 2 , f 5 � � f 1 , f 3 � 6

  7. Let P 2 ( n ) = a set of all pairings (perfect matchings, pair partitions, Feynman diagrams) � � � � γ = γ − (1) , γ + (1) γ − (2) , γ + (2) , . . . (4 , 5)(2 , 3)(1 , 6) , etc. Clearly P 2 ( odd ) = ∅ . A pairing γ ∈ P 2 ( n ) is consistent with ε if ε ( γ − ( i )) = − , ε ( γ + ( i )) = + . Write γ ∈ P ( ε ) . For ε = ( − , − , + , − , + , +) , the consistent pairings are (1 , 3)(2 , 5)(4 , 6) , (1 , 3)(2 , 6)(4 , 5) , (1 , 5)(2 , 3)(4 , 6) , (1 , 6)(2 , 3)(4 , 5) . Answer 0 . � � Ω , a ε (1) ( f 1 ) . . . a ε ( n ) ( f 2 n ) Ω � � � � � = f γ − (1) , f γ + (1) . . . f γ − ( n ) , f γ + ( n ) γ ∈P 2 ( ε ) and 0 if the number of f ’s is odd. 7

  8. Answer 1 (Wick formula). � Ω , X ( f 1 ) X ( f 2 ) . . . X ( f 2 n ) Ω � � � � � � = f γ − (1) , f γ + (1) . . . f γ − ( n ) , f γ + ( n ) γ ∈P 2 (2 n ) and 0 if the number of f ’s is odd. Example 2. = � f � 2 n |P 2 (2 n ) | = � f � 2 n (2 n )! � � Ω , X ( f ) 2 n Ω 2 n n ! � 2 π � f � e − x 2 / 2 � f � 2 dx. 1 R x 2 n √ = So X ( f ) has the normal distribution with mean 0 , standard deviation � f � . 8

  9. W ICK PRODUCTS A Wick product W ( f 1 , f 2 , . . . , f n ) =: X ( f 1 ) X ( f 2 ) . . . X ( f n ) : is obtained by expanding � a ε (1) ( f 1 ) . . . a ε ( n ) ( f n ) X ( f 1 ) X ( f 2 ) . . . X ( f n ) = ε ∈ I ( n ) and moving all a + to the left! Non-commutative ⇒ get a different operator. Example 3. W ( f 1 , f 2 ) =: X ( f 1 ) X ( f 2 ) : =: ( a + 1 a + 2 + a + 1 a + 1 a − 2 + a − 2 + a − 1 a − 2 ) : = a + 1 a + 2 + a + 2 + a + 1 a − 2 a − 1 + a − 1 a − 2 1 x + 2 + a + 1 , a + = X 1 X 2 − a − 2 a − 1 = X 1 X 2 − [ a − 2 ] = X ( f 1 ) X ( f 2 ) − � f 1 , f 2 � a polynomial in X ( f 1 ) , X ( f 2 ) ! 9

  10. True in general, follows from the recursion W ( f, f 1 , . . . , f n ) = X ( f ) W ( f 1 , . . . , f n ) n � � f, f k � W ( f, . . . , ˆ − f k , . . . , f n ) k =1 (exercise) Also note W ( f 1 , . . . , f n ) Ω = a + ( f 1 ) . . . a + ( f n ) Ω = f 1 ⊗ . . . ⊗ f n since only the first term in the sum makes a non-zero contri- bution. Question 2. Express W ( f 1 , . . . , f n ) in terms of the usual products. Question 3. Express X ( f 1 ) . . . X ( f n ) in terms of the Wick products. Denote by P 2 , 1 ( n ) the set of all incomplete pairings (match- ings, left-open pair partitions, incomplete Feynman diagrams): γ ∈ P 2 , 1 ( n ) breaks { 1 , . . . n } into 2 -element classes ( γ − ( i ) , γ + ( i )) and one-element classes ( γ 0 ( j )) . Denote by | γ | the total number of classes in γ . 10

  11. Answer 2. Using the recursion relation, W ( f 1 , . . . , f n ) � � � � ( − 1) | γ | � = f γ − ( i ) , f γ + ( i ) X ( f γ 0 ( j ) ) . i j γ ∈P 2 , 1 ( n ) Example 4. X ( f 1 ) X ( f 2 ) X ( f 3 ) Ω = X ( f 1 ) X ( f 2 ) f 3 = X ( f 1 )( f 2 ⊗ f 3 + � f 2 , f 3 � Ω) = f 1 ⊗ f 2 ⊗ f 3 + � f 1 , f 2 � f 3 + � f 1 , f 3 � f 2 + � f 2 , f 3 � f 1 . In general, X ( f 1 ) . . . X ( f n ) Ω � � � � = f γ − ( i ) , f γ + ( i ) f γ 0 (1) ⊗ . . . ⊗ f γ 0 ( k ) . i γ ∈P 2 , 1 ( n ) Therefore Answer 3. X ( f 1 ) . . . X ( f n ) � � � � = f γ − ( i ) , f γ + ( i ) W ( f γ 0 (1) , . . . , f γ 0 ( k ) ) . i γ ∈P 2 , 1 ( n ) 11

  12. Let Y p = W ( f p, 1 , . . . , f p,n p ) , p = 1 , . . . , t . Answer 4. � � � � � Ω , Y 1 . . . Y t Ω � = f γ − ( i ) , f γ + ( i ) γ ∈P 2 i where γ does not connect the elements in the same block. Answer 5. � � � � Y 1 . . . Y t = W ( f γ 0 (1) , . . . , f γ 0 ( k ) ) f γ − ( i ) , f γ + ( i ) γ ∈P 2 , 1 i where γ does not connect the elements in the same block. Use the normal-ordering representation for the proofs. 12

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend