combinatorial designs
play

Combinatorial Designs: constructions, algorithms and new results - PowerPoint PPT Presentation

Combinatorial Designs: constructions, algorithms and new results Ilias S. Kotsireas Wilfrid Laurier University ikotsire@wlu.ca I. S. Kotsireas, MSRI 1 Combinatorial Design Theory Is it possible to arrange


  1. ✬ ✩ Combinatorial Designs: constructions, algorithms and new results Ilias S. Kotsireas Wilfrid Laurier University ikotsire@wlu.ca ✫ ✪ I. S. Kotsireas, MSRI 1

  2. ✬ ✩ Combinatorial Design Theory Is it possible to arrange elements of a finite set into subsets so that certain properties are satisfied? Existence and non-existence results. Infinite classes. Tools & concepts from: linear algerbra, algebra, group theory, number theory, combinatorics, symbolic computation, numerical analysis. Applications to: cryptography, optical communications, wireless communications, coding theory. ✫ ✪ I. S. Kotsireas, MSRI 2

  3. ✬ ✩ • W. D. Wallis, A. P. Street, J. Seberry, Combinatorics: Room squares, sum-free sets, Hadamard matrices. Springer-Verlag, 1972. • A. V. Geramita, J. Seberry, Orthogonal designs. Quadratic forms and Hadamard matrices. Marcel Dekker Inc. 1979. • C. J. Colbourn, J. H. Dinitz, The CRC handbook of combinatorial designs. CRC Press, 1996. • V. D. Tonchev, Combinatorial configurations: designs, codes, graphs. Longman Scientific & Technical, John Wiley & Sons, Inc., 1988. • T. Beth, D. Jungnickel, H. Lenz, Design theory. Vols. I, II. Second edition. Cambridge University Press, Cambridge, 1999. • A. S. Hedayat, N. J. A. Sloane, J. Stufken Orthogonal arrays. Theory and applications. Springer-Verlag, 1999. • D. R. Stinson, Combinatorial designs, Constructions and analysis. Springer-Verlag, 2004. • C. J. Colbourn, J. H. Dinitz, Handbook of Combinatorial Designs. Second Edition, Chapman and Hall/CRC Press, 2006. • K. J. Horadam, Hadamard Matrices and Their Applications. Princeton ✫ University Press, 2006. ✪ I. S. Kotsireas, MSRI 3

  4. ✬ ✩ Weighing Matrices A weighing matrix W = W ( n, k ) of weight k , is a square n × n matrix with entries − 1 , 0 , +1 having k non-zero entries per row and column and inner product of distinct rows zero. W · W t = k I n Fact: If there is a W (2 n, k ), n odd, then k ≤ 2 n − 1 and k is the sum of two squares. Theorem: If there exist two circulant matrices A , B of order n each, satisfying A · A t + B · B t = k I n , then there exists a W (2 n, k ). ✫ ✪ I. S. Kotsireas, MSRI 4

  5. ✬ ✩   A B W (2 n, k ) =   − B t A t W (2 n, 2 n − 1) constructed from two circulants: infinite class W (2 n, 2 n − 3) constructed from two circulants: do not exist Ten Open Problems: [C. Koukouvinos, J. Seberry, JSPI (81), 1999] Do there exist W (2 · 23 , 41) , W (2 · 25 , 45) , W (2 · 27 , 49) , W (2 · 29 , 53) , W (2 · 33 , 61) , W (2 · 35 , 65) , W (2 · 39 , 73) , W (2 · 43 , 81) , W (2 · 45 , 85) , W (2 · 47 , 89) constructed from two circulants? Common feature: W (2 n, 2 n − 5), for n = 23 , . . . , 47. Odd large weights. R. Craigen, The structure of weighing matrices having large weights. ✫ ✪ Des. Codes Cryptogr. (5) 1995 I. S. Kotsireas, MSRI 5

  6. ✬ ✩ Plan of attack: Establish potential patterns for the locations of the 5 zeros in solutions. From 3 2 n ∼ 2 3 . 17 n ops, down to 2 2 n − 5 ops. Idea: Analyze the solutions sets for W (2 n, 2 n − 5) for all odd n up to n = 15. (bash/Maple meta-program, C code generation, supercomputing) First observation: (4 zeros) 0 0 0 0 ⋆ . . . ⋆ ⋆ . . . ⋆ a 1 . . . a n − 2 a n − 1 a n b 1 b 2 b 3 . . . b n ✫ ✪ I. S. Kotsireas, MSRI 6

  7. ✬ ✩ Second observation: (the remaining fifth zero) 0 0 0 0 0 a 1 ⋆ . . . ⋆ ⋆ . . . ⋆ a n − 2 b 3 ⋆ . . . ⋆ b n � �� � � �� � � �� � n − 2 terms 2 terms n − 3 2 terms n − 3 0 0 0 0 0 a 1 ⋆ . . . ⋆ a n − 2 b 3 ⋆ . . . ⋆ ⋆ . . . ⋆ b n � �� � � �� � � �� � 2 terms 2 terms n − 2 terms n − 3 n − 3 CRYSTALIZATION When we fix the 4 zeros as indicated above, then the fifth zero can only appear in exactly two possible places, in a W (2 n, 2 n − 5) solution. A proof will probably use Hall polynomials, PAF equations Implication: Infinite Class of W (2 n, 2 n − 5) ✫ ✪ I. S. Kotsireas, MSRI 7

  8. ✬ ✩ Results: W(2*23,41) solution -1 -1 -1 -1 -1 1 1 -1 1 -1 0 1 1 1 -1 -1 1 -1 -1 1 -1 0 0 0 0 -1 -1 1 1 -1 -1 1 1 1 -1 -1 -1 -1 -1 -1 1 -1 1 -1 1 -1 W(2*25,45) solution 1 1 1 1 1 -1 -1 1 1 -1 1 0 1 -1 1 -1 -1 -1 -1 1 1 1 1 0 0 0 0 -1 -1 1 -1 -1 1 1 1 1 -1 1 1 -1 1 -1 1 -1 1 1 -1 -1 1 1 W(2*27,49) solution 1 1 1 1 1 1 -1 -1 -1 1 -1 -1 0 -1 -1 1 1 -1 -1 1 -1 1 -1 1 -1 0 0 0 0 -1 -1 -1 1 1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 -1 -1 1 -1 -1 1 -1 1 -1 W (2 · 29 , 53) is still out of reach, as it still requires 2 53 ops. ✫ ✪ I. S. Kotsireas, MSRI 8

  9. ✬ ✩ Periodic & non-periodic autocorrelation function The 2nd elementary symmetric function in n variables a 1 , . . . , a n � σ 2 = a 1 a 2 + · · · a n − 1 a n = a i a j 1 ≤ i<j ≤ n plays a pivotal role in building W (2 n, k ). PAF and NPAF concepts n − 1 � n � n − i = n ( n − 1) � σ 2 is made up of = 2 2 i =1 ✫ ✪ I. S. Kotsireas, MSRI 9

  10. ✬ ✩ (pairwise different) quadratic monomials:  . .  a 1 a 2 a 2 a 3 a 3 a 4 . a n − 1 a n     . .  . .  . . •  a 1 a 3 a 2 a 4    . . .   . . .  . . a 3 a n . •   . . • . • a 1 a n − 1 a 2 a n     .  .   • • . • a 1 a n         � �� � � �� � � �� � � �� � � �� �  n − 1 terms n − 2 terms n − 3 terms n − i terms 1 term ✫ ✪ I. S. Kotsireas, MSRI 10

  11. ✬ ✩  . . . ← N A (1)  a 1 a 2 a 2 a 3 a 3 a 4 a n − 1 a n    . .   . .  . . • ← N A (2) a 1 a 3 a 2 a 4     . . . . . . . . . • ← N A (3) a 3 a n   . . .  . . .   a 1 a n − 1 a 2 a n • . • . .     .  .  • • . • ← N A ( n − 1) a 1 a n Lemma: N A (1) + N A (2) + . . . + N A ( n − 1) = σ 2 Fact: P A ( s ) = N A ( s ) + N A ( n − s ) , s = 1 , . . . , n − 1 Lemma: P A (1) + P A (2) + . . . + P A ( n − 1) = 2 σ 2 ✫ ✪ I. S. Kotsireas, MSRI 11

  12. ✬ ✩ Fact: NPAF = 0 = ⇒ PAF = 0 The converse is not always true. Definition: Two sequences A = [ a 1 , . . . , a n ] and B = [ b 1 , . . . , b n ] are said to have zero PAF (resp. NPAF) if P A ( s ) + P B ( s ) = 0 , i = 1 , . . . , n − 1 resp. N A ( s ) + N B ( s ) = 0 , i = 1 , . . . , n − 1 . Weighing matrices come from sequences with zero PAF. Fact: If we can construct two sequences A and B with zero PAF, then we can construct W (2 · n, k ) from two circulants. ✫ ✪ I. S. Kotsireas, MSRI 12

  13. ✬ ✩ Power Spectral Density, PSD PSD Theorem [Fletcher, Gysin, Seberry, Australas. J. Combin., 23, 2001] Two sequences [ a 1 , . . . , a n ], [ b 1 , . . . , b n ] can be used to make up circulant matrices A and B that will give W (2 n, k ) weighing matrices if and only if PSD ([ a 1 , . . . , a n ] , i ) + PSD ([ b 1 , . . . , b n ] , i ) = k, ∀ i = 0 , . . . , n − 1 2 where PSD ([ a 1 , . . . , a n ] , k ) denotes the k -th element of the power spectral density sequence, i.e. the square magnitude of the k -th element of the discrete Fourier transform (DFT) sequence associated to [ a 1 , . . . , a n ]. ✫ ✪ I. S. Kotsireas, MSRI 13

  14. ✬ ✩ The DFT sequence associated to [ a 1 , . . . , a n ] is defined as n − 1 � a i +1 ω ik , k = 0 , . . . , n − 1 DFT [ a 1 ,...,a n ] = [ µ 0 , . . . , µ n − 1 ] , with µ k = i =0 � 2 π � 2 π � � 2 πi n = cos where ω = e + i sin is a primitive n -th root of unity. n n The proof is based on the Wiener-Khinchin Theorem • The PSD of a sequence is equal to the DFT of its PAF sequence n − 1 � PAF A ( j ) ω jk | µ k | 2 = j =0 • The PAF of a sequence is equal to the inverse DFT of its PSD sequence n − 1 PAF A ( j ) = 1 � | µ k | 2 ω − jk n j =0 ✫ ✪ I. S. Kotsireas, MSRI 14

  15. ✬ ✩ The Parseval Theorem provides a horizontal relationship between the elements of a sequence [ a 1 , . . . , a n ] and its DFT sequence: n n | a i | 2 = 1 � � PSD ([ a 1 , . . . , a n ] , i ) n i =1 i =1 The PSD theorem provides a vertical relationship between the elements of two sequences [ a 1 , . . . , a n ] and [ b 1 , . . . , b n ]. The PSD criterion for W (2 n, k ) states that: if for a certain sequence [ a 1 , . . . , a n ] there exists i ∈ { 1 , . . . , n − 1 2 } with the property that PSD ([ a 1 , . . . , a n ] , i ) > k , then this sequence cannot be used to construct W (2 n, k ). Important Consequence: we can now decouple the PAF equations, roughly corresponding to cutting down the complexity by ✫ ✪ half. I. S. Kotsireas, MSRI 15

  16. ✬ ✩ Algorithm: String Sorting Begin with PSD ([ b 1 , . . . , b n ] , i ) = k − PSD ([ a 1 , . . . , a n ] , i ) , ∀ i = 0 , . . . , n − 1 2 and take integer parts   k − 1 − [ PSD ([ a 1 , . . . , a n ] , i )] , is not an integer [ PSD ([ b 1 , . . . , b n ] , i )] = k − [ PSD ([ a 1 , . . . , a n ] , i )] , is an integer  A pair of vectors [ a 1 , . . . , a n ] and [ b 1 , . . . , b n ] can be encoded as the concatenation of the integer parts of the first n − 1 components of their 2 PSD vectors: [ b 1 , . . . , b n ] − → [ PSD ([ b 1 , . . . , b n ] , 1)] . . . [ a 1 , . . . , a n ] − → k − 1 − [ PSD ([ a 1 , . . . , a n ] , 1)] . . . ✫ ✪ I. S. Kotsireas, MSRI 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend