collective neutrino oscillations in sne
play

Collective Neutrino Oscillations in SNe Huaiyu Duan University of - PowerPoint PPT Presentation

Collective Neutrino Oscillations in SNe Huaiyu Duan University of New Mexico Outline Introduction Numerical models and results Recent progress and challenges Summary Standard Model I II III mass $ 0 # 2.4 MeV 1.27 GeV


  1. Collective Neutrino Oscillations in SNe Huaiyu Duan University of New Mexico

  2. Outline • Introduction • Numerical models and results • Recent progress and challenges • Summary

  3. Standard Model I II III mass $ 0 # 2.4 MeV 1.27 GeV 171.2 GeV u c t ! ! charge $ ! 0 Neutrinos in Standard " " spin $ " 1 Model: name $ up charm top photon 0 g 4.8 MeV 104 MeV 4.2 GeV s d b • Three flavors - # - # - # 0 Quarks " " " 1 down strange bottom gluon • No mass <0.17 MeV <15.5 MeV 91.2 GeV 0 <2.2 eV ! e ! µ ! " Z 0 0 0 0 " " " 1 • No electric charge, electron weak muon tau neutrino force neutrino neutrino Bosons (Forces) interacting weakly 0.511 MeV 105.7 MeV 1.777 GeV 80.4 GeV e µ " ± W -1 -1 ± 1 -1 Leptons " " " 1 weak electron muon tau force Wikimedia: Standard Model of Elementary Particles

  4. Neutrinos in Supernovae n’s + seed → heavy (A=100 ~ 200) r-process • ~10 53 ergs, 10 58 seeds (A = 50 ~100) T ≈ 0.25MeV … neutrinos in ~10 4 He( αα , γ ) 12 C 4 He( α n, γ ) 9 Be seconds temperature, density 2n + 2p → α radius, wind speed T ≈ 0.75MeV ν e + n → p + e - • All neutrino species, nucleosynthesis 10~30 MeV WFO • Dominate energetics T ≈ 0.9MeV ν e + n ⇌ p + e - _ ν e + p ⇌ n + e + • Influence heating nucleosynthesis region • Probe into SNe neutron cooling star region

  5. Vacuum Oscillations neutrino mass eigenstates ≠ weak interaction states | ν 1 ⇥ = cos θ v | ν e ⇥ + sin θ v | ν µ ⇥ with mass m 1 | ν 2 ⇥ = � sin θ v | ν e ⇥ + cos θ v | ν µ ⇥ with mass m 2 vacuum mixing angle initially | ψ ( x = 0) i = | ν e i ✓ δ m 2 x ◆ P ν e ν e ( x ) ⌘ | h ν e | ψ ( x ) i | 2 = 1 � sin 2 2 θ v sin 2 4 E ν neutrino survival probability

  6. Matter Effect electron number density ⇧ � ⇥ � ⇥ � ⇥ i d ⇥ ν e | ψ ν ⇤ = 1 ⇥ ν e | ψ ν ⇤ 2 G F n e � ω cos 2 θ v ω sin 2 θ v 2 ⇥ ν µ | ψ ν ⇤ ⇥ ν µ | ψ ν ⇤ ω sin 2 θ v ω cos2 θ v d x 2 vac. osc. freq. ω = δ m 2 2 E ν | ν H ⇥ � | ν e ⇥ | ν H � = | ν 2 � | ν L ⇥ � | ν µ ⇥ MSW Res. Cond.: δ m 2 ⇥ | ν L � = | ν 1 � 2 G F n e � 2 E ν n e Mikheyev, Smirnov (1985)

  7. Three Flavor Mixing weak flavor states vacuum mass eigenstates ∗       | ν e ⇥ | ν 1 ⇥ c 12 c 13 c 13 s 12 s 13 � c 23 s 12 e i φ � c 12 s 13 s 23 c 12 c 23 e i φ � s 12 s 13 s 23 | ν µ ⇥ | ν 2 ⇥  = c 13 s 23      s 23 s 12 e i φ � c 12 c 23 s 13 � c 12 s 23 e i φ � c 23 s 12 s 13 | ν τ ⇥ | ν 3 ⇥ c 13 c 23 ⇥ ⇥ 7–8 � 10 � 5 eV 2 , δ m 2 12 ⇥ δ m 2 θ 12 ⇥ θ ⇥ ⇥ 0 . 6 θ 23 ⇥ θ atm ⇥ π atm ⇥ 2–3 � 10 − 3 eV 2 , | δ m 2 23 | ⇥ δ m 2 4 23 | ' 2–3 ⇥ 10 − 3 eV 2 , | δ m 2 13 | ' | δ m 2 θ 13 ' 0 . 15 φ is unknown CP violation phase

  8. Mass Hierarchy normal mass hierarchy inverted mass hierarchy ν µ ν τ ν 3 ν e ν µ ν τ ν 2 δ m 2 � δ m 2 ν 1 ν e ν µ ν τ atm m 2 ν δ m 2 ν e ν µ ν τ ν 2 atm δ m 2 � ν e ν µ ν τ ν 1 ν µ ν τ ν 3

  9. Density Matrix Pure State: | ψ i = ) ˆ ρ = | ψ ih ψ |  � 1 0 Example: | ν e i = ) ρ = 0 0 Mixed State:  � 0 n ν e ρ ∝ 0 n ν x

  10. In Dense Medium ( ∂ t + ˆ v · r ) ρ = − i[ H , ρ ] mass matrix electron density M 2 √ = + 2 G F diag[ n e , 0 , 0] + H H νν 2 E neutrino energy ν - ν forward scattering (self-coupling) Z √ d 3 p 0 (1 − ˆ v 0 )( ρ p 0 − ¯ v · ˆ H νν = 2 G F ρ p 0 )

  11. Oscillations in SN M 2 √ = + 2 G F diag[ n e , 0 , 0] + H H νν 2 E neutrino sphere ν k ν q ν p

  12. Outline • Introduction • Numerical models and results • Recent progress and challenges • Summary

  13. Numerical Models Coherent forward scattering outside neutrino sphere ρ ( t ; r, Θ , Φ ; E, ϑ , ϕ )

  14. Numerical Models Stationary emission ρ ( r, Θ , Φ ; E, ϑ , ϕ )

  15. Numerical Models Axial symmetry around the Z axis ρ ( r, Θ ; E, ϑ , ϕ )

  16. Numerical Models Spherical symmetry about the center (inconsistent?) ρ ( r ; E, ϑ , ϕ )

  17. Numerical Models Azimuthal symmetry around any radial direction ρ ( r ; E, ϑ ) Bulb model

  18. δ m 2 = 3 � 10 − 3 eV 2 ⇥ δ m 2 atm , θ v = 0 . 1 , L ν = 0

  19. δ m 2 = � 3 ⇥ 10 − 3 eV 2 ' δ m 2 atm , θ v = 0 . 1 , L ν = 10 51 erg / s

  20. neutrino antineutrino P νν 1 1 1 normal mass hierarchy 0.9 0.8 0.8 0.8 0.7 0.6 0.6 0.6 0.5 0.4 0.4 0.4 0.3 0.2 0.2 0.2 cos ϑ R 0.1 0 0 0 20 40 60 80 0 20 40 60 80 1 1 inverted mass hierarchy 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0 0 0 20 40 60 80 0 20 40 60 80 HD, Fuller, Qian & Carlson (2006) E ν (MeV)

  21. Numerical Models Trajectory independent neutrino flavor evolution ρ ( r ; E ) Single-angle model Equivalent to the expansion of a homogeneous, isotropic gas

  22. neutrino antineutrino normal mass hierarchy 0.4 0.4 0.2 0.2 ν e z ν e z 0 0 ¯ ς ς -0.2 -0.2 (a) (b) -0.4 -0.4 0 10 20 30 40 0 10 20 30 40 E ν e (MeV) E ¯ ν e (MeV) inverted mass hierarchy single-angle 0.4 0.4 multi-angle 0.2 0.2 ν e z ν e z 0 0 ¯ ς ς -0.2 -0.2 (c) (d) -0.4 -0.4 0 10 20 30 40 0 10 20 30 40 E ν e (MeV) ν e (MeV) E ¯ Duan+ (2006)

  23. Neutronization Burst Normal Mass Hierarchy solar split atm. split O-Ne-Mg Core-Collapse ν e initial Neutronization Pulse L ν e = 10 53 erg / s ν 3 h E ν e i = 11 MeV Avg. Spectra r = 5000 km ν 2 ν 1 0 10 20 30 40 E [MeV] Single Angle: Duan+ (2007) Multi-Angle: Cherry+ (2010)

  24. Multiple Spectral Splits Antineutrinos Neutrinos IH IH NH NH 0 10 20 30 40 0 10 20 30 40 50 Energy [MeV] Energy [MeV] Dasgupta et al (2009)

  25. Outline • Introduction • Numerical models and results • Recent progress and challenges • Summary

  26. Dimension matters s i n g l e - a n g l e 1 - 1 10 n o i t r o t - 2 s 10 i D l a r t - 3 c 10 e Flavor instability p S - 4 Bulb 10 - 5 10 50 100 150 200 250 r [ k m ] Duan & Friedland (2010)

  27. Nucleosynthesis solar no osc. multiangle single-angle Duan, Friedland, McLaughlin & Surman (2011)

  28. Trajectory Dependence ρ ( r ; E ) ρ ( r ; E, ϑ )

  29. Directional Symmetry Z √ d 3 p 0 (1 − ˆ v 0 )( ρ p 0 − ¯ v · ˆ H νν = 2 G F ρ p 0 ) " # v 0 ) − 1 X v 0 ) = 4 π v ) Y ⇤ v ) Y ⇤ v 0 ) (1 − ˆ v · ˆ Y 0 , 0 (ˆ 0 , 0 (ˆ Y 1 ,m (ˆ 1 ,m (ˆ 3 m =0 , ± 1 • Monopole ( l =0) and dipole ( l =1) modes are unstable in opposite neutrino mass hierarchies. • Unstable dipole ( l =1) modes break the directional symmetry. Duan (2013)

  30. Inverted Hierarchy -2 10 |~ q 00 | |~ q 10 | -3 10 |~ q 1c | |~ q 1s | -4 10 q | |~ -5 10 -6 10 -7 10 0 1 2 3 4 τ Duan (2013)

  31. Normal Hierarchy -4 |~ 10 q 00 | |~ q 10 | |~ q 1c | |~ q 1s | -5 10 q | |~ -6 10 -7 10 0 1 2 3 4 τ Duan (2013)

  32. Breaking Axial Symmetry Chakraborty, Mirizzi (2013)

  33. m H km - 1 L ∝ L/r 4 10 3 10 2 10 1 0.1 10 4 Matter Suppression 10 11 NH ∝ ρ /r 2 10 3 n e 10 10 m N IH = Y e l H km - 1 L r 10 2 = 1 0 9 g c m - 3 10 7 10 10 8 10 6 1 10 5 0.1 50 100 300 500 1000 Self Suppression r H km L Raffelt+ (2013)

  34. Directional Symmetry ρ ( r ; E, ϑ ) ρ ( r ; E, ϑ , ϕ )

  35. Line Model • x translation symmetry • left-right symmetry Z L ρ m ( z ) = 1 ρ ( x, z ) − 2 m π i x/L d x L 0 z L R R x Duan & Shalgar (2015)

  36. Spatial Symmetry α = n ¯ ν /n ν µ ∝ G F n ν Duan & Shalgar (2015)

  37. m H km - 1 L ∝ L/r 4 10 4 10 3 10 2 10 1 10 0 10 - 1 10 6 SN Density 10 5 ∝ ρ /r 2 10 4 Matter Suppression l H km - 1 L 10 3 10 2 10 1 10 2 10 3 k = 0 10 0 50 100 200 500 1000 Radius H km L No Self Suppression Chakraborty+ (2015)

  38. Spatial Symmetry ρ ( r ; E, ϑ , ϕ ) ρ ( r, Θ , Φ ; E, ϑ , ϕ )

  39. Temporal Symmetry Matter suppression is relieved for high-frequency modes Abbar & Duan (2015) Dasgupta & Mirizzi (2015)

  40. Fast Neutrino Oscillations • Usually flavor instabilities grow _ at rates comparable to ν e sphere vacuum oscillation frequency. • Fast oscillations grow at rates comparable to ( G F n ν ). • Fast oscillations can occur because of different angular distributions of ν e and anti- ν e . ν e sphere • Can fast oscillations occur within the proto-neutron star? Sawyer (2015) Chakraborty+ (2016)

  41. Summary • Neutrinos are important in SNe (dynamics, nucleosynthesis, new probe). • Neutrino oscillations are also important because they change fluxes in different flavors. • The dense neutrino medium surrounding the nascent neutron star can oscillate collectively ( Lecture 1 ). • Neutrino oscillations can be qualitatively different in different models.

  42. Summary • Assumptions of the bulb model: • Axial symmetry (in momentum space). • Spherical symmetry (in real space). • Stationary assumption (time translation symmetry). • Same neutrino sphere (or angular distribution) for all flavors.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend