coherence and normalisation by evaluation for
play

Coherence and normalisation-by-evaluation for bicategorical - PowerPoint PPT Presentation

Coherence and normalisation-by-evaluation for bicategorical cartesian closed structure Marcelo Fiore : and Philip Saville* : University of Cambridge Department of Computer Science and Technology *University of Edinburgh School of Informatics 1


  1. Coherence and normalisation-by-evaluation for bicategorical cartesian closed structure Marcelo Fiore : and Philip Saville* : University of Cambridge Department of Computer Science and Technology *University of Edinburgh School of Informatics 1 / 27

  2. Cartesian closed bicategories: - Generalised species and cartesian distributors (linear logic, higher category theory) (Fiore, Gambino, Hyland, Winskel), (Fiore & Joyal) - Categorical algebra (operads) (Gambino & Joyal) - Game semantics (concurrent games) (Yamada & Abramsky, Winskel et al. , Paquet) - ‘STLC with explicit substitution and invertible βη -rewrites’ (free cartesian closed bicategory) (Fiore & S., LICS 2019) 2 / 27

  3. Cartesian closed bicategories: - Generalised species and cartesian distributors (linear logic, higher category theory) (Fiore, Gambino, Hyland, Winskel), (Fiore & Joyal) - Categorical algebra (operads) (Gambino & Joyal) - Game semantics (concurrent games) (Yamada & Abramsky, Winskel et al. , Paquet) - ‘STLC with explicit substitution and invertible βη -rewrites’ (free cartesian closed bicategory) (Fiore & S., LICS 2019) In the paper: two proofs of coherence ù ‘all (pasting) diagrams commute’ 2 / 27

  4. Cartesian closed bicategories: - Generalised species and cartesian distributors (linear logic, higher category theory) (Fiore, Gambino, Hyland, Winskel), (Fiore & Joyal) - Categorical algebra (operads) (Gambino & Joyal) - Game semantics (concurrent games) (Yamada & Abramsky, Winskel et al. , Paquet) - ‘STLC with explicit substitution and invertible βη -rewrites’ (free cartesian closed bicategory) (Fiore & S., LICS 2019) In the paper: two proofs of coherence ù ‘all (pasting) diagrams commute’ Consequences: 2 / 27

  5. Cartesian closed bicategories: - Generalised species and cartesian distributors (linear logic, higher category theory) (Fiore, Gambino, Hyland, Winskel), (Fiore & Joyal) - Categorical algebra (operads) (Gambino & Joyal) - Game semantics (concurrent games) (Yamada & Abramsky, Winskel et al. , Paquet) - ‘STLC with explicit substitution and invertible βη -rewrites’ (free cartesian closed bicategory) (Fiore & S., LICS 2019) In the paper: two proofs of coherence ù ‘all (pasting) diagrams commute’ Consequences: 1. Modulo ” there is at most one rewrite t ù βη t 1 2 / 27

  6. Cartesian closed bicategories: - Generalised species and cartesian distributors (linear logic, higher category theory) (Fiore, Gambino, Hyland, Winskel), (Fiore & Joyal) - Categorical algebra (operads) (Gambino & Joyal) - Game semantics (concurrent games) (Yamada & Abramsky, Winskel et al. , Paquet) - ‘STLC with explicit substitution and invertible βη -rewrites’ (free cartesian closed bicategory) (Fiore & S., LICS 2019) In the paper: two proofs of coherence ù ‘all (pasting) diagrams commute’ Consequences: 1. Modulo ” there is at most one rewrite t ù βη t 1 2. Constructions in cc-bicategories simplify to STLC 2 / 27

  7. Cartesian closed bicategories 3 / 27

  8. Composition by universal property ñ bicategory In a category C with pullbacks: 1. objects: objects of C , 2. 1-cells A ù B : spans p A Ð X Ñ B q , X 3. 2-cells: commutative squares A h B Y Composition defined by pullback: X ˆ B Y x X Y A B C 4 / 27

  9. Composition by universal property ñ bicategory In a category C with pullbacks: 1. objects: objects of C , 2. 1-cells A ù B : spans p A Ð X Ñ B q , X 3. 2-cells: commutative squares A h B Y Composition defined by pullback: ù associative up to iso X ˆ B Y x X Y A B C 4 / 27

  10. Bicategories 5 / 27

  11. Bicategories - Objects X , Y , Z , . . . 5 / 27

  12. Bicategories - Objects X , Y , Z , . . . - Morphisms ( 1-cells ) f : X Ñ Y 5 / 27

  13. Bicategories - Objects X , Y , Z , . . . - Morphisms ( 1-cells ) f : X Ñ Y f - 2-cells X Y ó α f 1 5 / 27

  14. Bicategories - Objects X , Y , Z , . . . - Morphisms ( 1-cells ) f : X Ñ Y f - 2-cells X Y ó α f 1 - Invertible 2-cells witnessing the axioms a h , g , f p h ˝ g q ˝ f ù ù ù ñ h ˝ p g ˝ f q l f Id X ˝ f ù ñ f r g g ˝ Id X ù ñ g . 5 / 27

  15. Bicategories - Objects X , Y , Z , . . . - Morphisms ( 1-cells ) f : X Ñ Y f - 2-cells X Y ó α f 1 - Invertible 2-cells witnessing the axioms a h , g , f p h ˝ g q ˝ f ù ù ù ñ h ˝ p g ˝ f q l f Id X ˝ f ù ñ f r g g ˝ Id X ù ñ g subject to a triangle law and pentagon law. 5 / 27

  16. Bicategories - Objects X , Y , Z , . . . - Morphisms ( 1-cells ) f : X Ñ Y f - 2-cells X Y ó α f 1 - Invertible 2-cells witnessing the axioms a h , g , f p h ˝ g q ˝ f ù ù ù ñ h ˝ p g ˝ f q l f Id X ˝ f ù ñ f r g g ˝ Id X ù ñ g subject to a triangle law and pentagon law. ù ‘Monoidal category with many objects’ 5 / 27

  17. Bicategories everywhere (not all cartesian closed!) 1. Monoidal category = one-object bicategory 2. 2-category = bicategory with a , l , r all id 3. Span p C q 4. Proof-relevant relations 5. Profunctors (distributors) 6. Polynomial functors (W-types, ornaments, containers, . . . ) 7. Concurrent games 6 / 27

  18. Cartesian closed bicategories Bicategories B equipped with 7 / 27

  19. Cartesian closed bicategories Bicategories B equipped with families of equivalences B p X , A 1 ˆ A 2 q » B p X , A 1 q ˆ B p X , A 2 q B p X , A “ ⊲ B q » B p X ˆ A , B q NB: Differ from the ‘cartesian bicategories’ of Carboni and Walters! 7 / 27

  20. Cartesian closed bicategories Bicategories B equipped with families of equivalences p π 1 ˝´ ,π 2 ˝´q B p X , A 1 ˆ A 2 q » B p X , A 1 q ˆ B p X , A 2 q % x´ , “y (pairing) eval A , B ˝p´ˆ A q B p X , A “ ⊲ B q » B p X ˆ A , B q % λ (currying) NB: Differ from the ‘cartesian bicategories’ of Carboni and Walters! 7 / 27

  21. Cartesian closed bicategories Bicategories B equipped with families of equivalences p π 1 ˝´ ,π 2 ˝´q B p X , A 1 ˆ A 2 q » B p X , A 1 q ˆ B p X , A 2 q % x´ , “y (pairing) eval A , B ˝p´ˆ A q B p X , A “ ⊲ B q » B p X ˆ A , B q % λ (currying) – – π i ˝ x f 1 , f 2 y ù ñ f i ù ñ x π 1 ˝ g , π 2 ˝ g y g 7 / 27

  22. Cartesian closed bicategories Bicategories B equipped with families of equivalences p π 1 ˝´ ,π 2 ˝´q B p X , A 1 ˆ A 2 q » B p X , A 1 q ˆ B p X , A 2 q % x´ , “y (pairing) eval A , B ˝p´ˆ A q B p X , A “ ⊲ B q » B p X ˆ A , B q % λ (currying) – – π i ˝ x f 1 , f 2 y ù ñ f i g ù ñ x π 1 ˝ g , π 2 ˝ g y – – eval A , B ˝ p λ f ˆ A q ù ñ f ù ñ λ p eval A , B ˝ p g ˆ A qq g 7 / 27

  23. Cartesian closed bicategories Bicategories B equipped with families of equivalences p π 1 ˝´ ,π 2 ˝´q B p X , A 1 ˆ A 2 q » B p X , A 1 q ˆ B p X , A 2 q % x´ , “y (pairing) eval A , B ˝p´ˆ A q B p X , A “ ⊲ B q » B p X ˆ A , B q % λ (currying) – – π i ˝ x f 1 , f 2 y ù ñ f i ù ñ x π 1 ˝ g , π 2 ˝ g y g π i ˝ x π 1 ˝ g , π 2 ˝ g y β ˆ π i ˝ η ˆ i π i ˝ g π i ˝ g id 7 / 27

  24. Coherence 8 / 27

  25. Mac Lane-style proof theory, rewriting theory "all diagrams commute" coherence coherence-by-strictification 2-cat. universal algebra, Yoneda embedding B » B 9 / 27

  26. Mac Lane-style proof theory, rewriting theory "all diagrams commute" “denotational semantics” (1) use an internal language (2) prove normalisation by semantic argument coherence coherence-by-strictification 2-cat. universal algebra, Yoneda embedding B » B 9 / 27

  27. Mac Lane-style proof theory, rewriting theory "all diagrams commute" “denotational semantics” (1) use an internal language (2) prove normalisation by semantic argument coherence in the paper coherence-by-strictification 2-cat. universal algebra, Yoneda embedding B » B 9 / 27

  28. “denotational semantics” (1) use an internal language (2) prove normalisation by semantic argument coherence ‚ builds on categorical & type-theoretic intuition ‚ once set up about as hard as categorical proof 9 / 27

  29. Theorem (Coherence of cc-bicategories) For any f , f 1 : X Ñ Y in the free cc-bicategory on a graph, there exists at most one 2-cell τ : f ñ f 1 . 10 / 27

  30. Theorem (Coherence of cc-bicategories) For any f , f 1 : X Ñ Y in the free cc-bicategory on a graph, there exists at most one 2-cell τ : f ñ f 1 . Consequence 1: modulo ” there is at most one rewrite t ù βη t 1 10 / 27

  31. Theorem (Coherence of cc-bicategories) For any f , f 1 : X Ñ Y in the free cc-bicategory on a graph, there exists at most one 2-cell τ : f ñ f 1 . Consequence 1: modulo ” there is at most one rewrite t ù βη t 1 Consequence 2: can use STLC for constructions in cc-bicategories 10 / 27

  32. Theorem (Coherence of cc-bicategories) For any f , f 1 : X Ñ Y in the free cc-bicategory on a graph, there exists at most one 2-cell τ : f ñ f 1 . Consequence 1: modulo ” there is at most one rewrite t ù βη t 1 Consequence 2: can use STLC for constructions in cc-bicategories 11 / 27

  33. The internal language for cc-bicategories, Λ ˆ , Ñ (Fiore & S., 2019) ps Judgements c.f. Seely, Hilken, Hirschowitz Terms Γ $ t : A (1-cells) Γ $ τ : t ñ t 1 : A Rewrites (2-cells) Γ $ τ ” τ 1 : t ñ t 1 : A Equations 12 / 27

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend