normal forms in sequent calculus
play

Normal forms in sequent calculus Lu s Pinto Centro de Matem - PowerPoint PPT Presentation

Normal forms in sequent calculus Lu s Pinto Centro de Matem atica, Univ. Minho, Portugal Computational Logic Workshop in honour of Roy Dyckhoff 18-19 November 2011 Univ. St Andrews, Scotland Joint work with Jos e Esp rito Santo


  1. Normal forms in sequent calculus Lu´ ıs Pinto Centro de Matem´ atica, Univ. Minho, Portugal Computational Logic Workshop in honour of Roy Dyckhoff 18-19 November 2011 Univ. St Andrews, Scotland Joint work with Jos´ e Esp´ ırito Santo and Maria Jo˜ ao Frade

  2. Plan Part I: Revisiting permutative conversions in sequent calculus Part II: A calculus of multiary sequent terms Part III: β -normal λ -terms in sequent calculus Part IV: Refinements

  3. PART I Revisiting permutative conversions in sequent calculus

  4. Permutations in intuitionistic sequent calculus ◮ One of Kleene’s permutation for intuitionistic implication: D 2 D ′ D 2 1 Γ , y : B , z : C ⊢ D Γ , z : C ⊢ A Γ , y : B , z : C ⊢ D D 1 Γ , y : B ⊢ C ⊃ D ⊃ R ⊃ L � Γ ⊢ A Γ , x : A ⊃ B , z : C ⊢ D ⊃ L Γ , x : A ⊃ B ⊢ C ⊃ D ⊃ R Γ , x : A ⊃ B ⊢ C ⊃ D ◮ Permutability Thm: D 1 , D 2 are inter-permutable iff ϕ D 1 = ϕ D 2 , for ϕ Prawitz’s mapping of sequent calculus into nat. deduction. ◮ Zucker and Pottinger: cuts are present and permutations involve cut or contraction. ◮ Mints, Dyckhoff&P. and Schwichtenberg: cut-free fragments and permutations involve typically logical inferences.

  5. Permutations in intuitionistic sequent calculus ◮ One of Kleene’s permutation for intuitionistic implication: D 2 D ′ D 2 1 Γ , y : B , z : C ⊢ D Γ , z : C ⊢ A Γ , y : B , z : C ⊢ D D 1 Γ , y : B ⊢ C ⊃ D ⊃ R ⊃ L � Γ ⊢ A Γ , x : A ⊃ B , z : C ⊢ D ⊃ L Γ , x : A ⊃ B ⊢ C ⊃ D ⊃ R Γ , x : A ⊃ B ⊢ C ⊃ D ◮ Permutability Thm: D 1 , D 2 are inter-permutable iff ϕ D 1 = ϕ D 2 , for ϕ Prawitz’s mapping of sequent calculus into nat. deduction. ◮ Zucker and Pottinger: cuts are present and permutations involve cut or contraction. ◮ Mints, Dyckhoff&P. and Schwichtenberg: cut-free fragments and permutations involve typically logical inferences.

  6. Permutations in intuitionistic sequent calculus ◮ One of Kleene’s permutation for intuitionistic implication: D 2 D ′ D 2 1 Γ , y : B , z : C ⊢ D Γ , z : C ⊢ A Γ , y : B , z : C ⊢ D D 1 Γ , y : B ⊢ C ⊃ D ⊃ R ⊃ L � Γ ⊢ A Γ , x : A ⊃ B , z : C ⊢ D ⊃ L Γ , x : A ⊃ B ⊢ C ⊃ D ⊃ R Γ , x : A ⊃ B ⊢ C ⊃ D ◮ Permutability Thm: D 1 , D 2 are inter-permutable iff ϕ D 1 = ϕ D 2 , for ϕ Prawitz’s mapping of sequent calculus into nat. deduction. ◮ Zucker and Pottinger: cuts are present and permutations involve cut or contraction. ◮ Mints, Dyckhoff&P. and Schwichtenberg: cut-free fragments and permutations involve typically logical inferences.

  7. Dyckhoff&P.’s approach to the Permutability Thm. ◮ Terms are used to represent derivations: x : A , Γ ⊢ x : A Ax x : A , Γ ⊢ t : B Γ , x ⊢ u : A y : B , Γ , x ⊢ v : C Γ ⊢ λ x . t : A ⊃ B ⊃ R ⊃ L Γ , x : A ⊃ B ⊢ x ( u ( y ) v ): C ◮ Normal cut-free forms: ◮ at x ( u ( y ) v ) impose v is y -normal (ie v = y or v = y ( u ′ ( z ) v ′ ) , y �∈ u ′ , v ′ , and v ′ is z -normal); ◮ in bijection with β -nfs of λ -calculus, via Herbelin’s nfs of λ : ✲ x ( u , ( y ) y ( u ′ ( z ) z ) ( x ; [ u , u ′ ]) ✛ ) ✛ ✲ � �� � y / ✲ ∈ ✛ xuu ′

  8. Dyckhoff&P.’s approach to the Permutability Thm. ◮ Terms are used to represent derivations: x : A , Γ ⊢ x : A Ax x : A , Γ ⊢ t : B Γ , x ⊢ u : A y : B , Γ , x ⊢ v : C Γ ⊢ λ x . t : A ⊃ B ⊃ R ⊃ L Γ , x : A ⊃ B ⊢ x ( u ( y ) v ): C ◮ Normal cut-free forms: ◮ at x ( u ( y ) v ) impose v is y -normal (ie v = y or v = y ( u ′ ( z ) v ′ ) , y �∈ u ′ , v ′ , and v ′ is z -normal); ◮ in bijection with β -nfs of λ -calculus, via Herbelin’s nfs of λ : ✲ x ( u , ( y ) y ( u ′ ( z ) z ) ( x ; [ u , u ′ ]) ✛ ) ✛ ✲ � �� � y / ✲ ∈ ✛ xuu ′

  9. Dyckhoff&P.’s approach to the Permutability Thm. ◮ Terms are used to represent derivations: x : A , Γ ⊢ x : A Ax x : A , Γ ⊢ t : B Γ , x ⊢ u : A y : B , Γ , x ⊢ v : C Γ ⊢ λ x . t : A ⊃ B ⊃ R ⊃ L Γ , x : A ⊃ B ⊢ x ( u ( y ) v ): C ◮ Normal cut-free forms: ◮ at x ( u ( y ) v ) impose v is y -normal (ie v = y or v = y ( u ′ ( z ) v ′ ) , y �∈ u ′ , v ′ , and v ′ is z -normal); ◮ in bijection with β -nfs of λ -calculus, via Herbelin’s nfs of λ : ✲ x ( u , ( y ) y ( u ′ ( z ) z ) ( x ; [ u , u ′ ]) ✛ ) ✛ ✲ � �� � y / ✲ ∈ ✛ xuu ′

  10. Dyckhoff&P.’s approach to the Permutability Thm. ◮ Permutations are oriented and induce a rewriting system whose nfs are the normal cut-free forms: ( i ) x ( u ( y ) v ) → y if y �∈ v ( ii ) x ( u ( y ) z ( v ( w ) t )) → z ( x ( u ( y ) v ) ( w ) x ( u ( y ) t )) if y � = z and y ∈ v or t ( ii ′ ) x ( u ( y ) y ( v ( w ) t )) → x ( u ( y ) y ( x ( u ( y ) v ) ( w ) x ( u ( y ) t ))) if y ∈ v or t ( iii ) x ( u ( y ) λ z . v ) → λ z . x ( u ( y ) v ) ◮ x ( u ( y ) v ) is approx. the explicit substitution of xu for y in v . ◮ The induced rewriting system is confluent and WN.

  11. Dyckhoff&P.’s approach to the Permutability Thm. ◮ Permutations are oriented and induce a rewriting system whose nfs are the normal cut-free forms: ( i ) x ( u ( y ) v ) → y if y �∈ v ( ii ) x ( u ( y ) z ( v ( w ) t )) → z ( x ( u ( y ) v ) ( w ) x ( u ( y ) t )) if y � = z and y ∈ v or t ( ii ′ ) x ( u ( y ) y ( v ( w ) t )) → x ( u ( y ) y ( x ( u ( y ) v ) ( w ) x ( u ( y ) t ))) if y ∈ v or t ( iii ) x ( u ( y ) λ z . v ) → λ z . x ( u ( y ) v ) ◮ x ( u ( y ) v ) is approx. the explicit substitution of xu for y in v . ◮ The induced rewriting system is confluent and WN.

  12. Schwichtenberg’s approach via multiary sequent terms ◮ x -normality can be represented with lists, eg µ x ( u , u ′ :: [] , ( z ) z ) ✛ x ( u , ( y ) y ( u ′ ( z ) z ) ) ✲ � �� � y / ✛ ∈ xuu ′ ◮ Schwichtenberg considers a family of left rules (one for each k ∈ N 0 ) ⊢ u : A ⊢ u 1 : B 1 . . . ⊢ u k : B k y : C ⊢ v : D x : A ⊃ B 1 ⊃ . . . ⊃ B k ⊃ C ⊢ x ( u , u 1 :: ... :: u k :: [] , ( y ) v ): D ⊃ L k ◮ The µ -nfs are determined by the µ -rule (where a stands for ”append”): x ( u , l , ( y ) y ( u ′ , l ′ , ( z ) v )) → x ( u , a ( l , u ′ :: l ′ ) , ( z ) v ) if y �∈ u ′ , l ′ , v ◮ Permutative rules aim at trivialising generality to x ( u , l , ( z ) z ). ◮ SN holds and implies SN for a restriction of Dyckhoff&P.’s rules.

  13. Schwichtenberg’s approach via multiary sequent terms ◮ x -normality can be represented with lists, eg µ x ( u , u ′ :: [] , ( z ) z ) ✛ x ( u , ( y ) y ( u ′ ( z ) z ) ) ✲ � �� � y / ✛ ∈ xuu ′ ◮ Schwichtenberg considers a family of left rules (one for each k ∈ N 0 ) ⊢ u : A ⊢ u 1 : B 1 . . . ⊢ u k : B k y : C ⊢ v : D x : A ⊃ B 1 ⊃ . . . ⊃ B k ⊃ C ⊢ x ( u , u 1 :: ... :: u k :: [] , ( y ) v ): D ⊃ L k ◮ The µ -nfs are determined by the µ -rule (where a stands for ”append”): x ( u , l , ( y ) y ( u ′ , l ′ , ( z ) v )) → x ( u , a ( l , u ′ :: l ′ ) , ( z ) v ) if y �∈ u ′ , l ′ , v ◮ Permutative rules aim at trivialising generality to x ( u , l , ( z ) z ). ◮ SN holds and implies SN for a restriction of Dyckhoff&P.’s rules.

  14. Schwichtenberg’s approach via multiary sequent terms ◮ x -normality can be represented with lists, eg µ x ( u , u ′ :: [] , ( z ) z ) ✛ x ( u , ( y ) y ( u ′ ( z ) z ) ) ✲ � �� � y / ✛ ∈ xuu ′ ◮ Schwichtenberg considers a family of left rules (one for each k ∈ N 0 ) ⊢ u : A ⊢ u 1 : B 1 . . . ⊢ u k : B k y : C ⊢ v : D x : A ⊃ B 1 ⊃ . . . ⊃ B k ⊃ C ⊢ x ( u , u 1 :: ... :: u k :: [] , ( y ) v ): D ⊃ L k ◮ The µ -nfs are determined by the µ -rule (where a stands for ”append”): x ( u , l , ( y ) y ( u ′ , l ′ , ( z ) v )) → x ( u , a ( l , u ′ :: l ′ ) , ( z ) v ) if y �∈ u ′ , l ′ , v ◮ Permutative rules aim at trivialising generality to x ( u , l , ( z ) z ). ◮ SN holds and implies SN for a restriction of Dyckhoff&P.’s rules.

  15. Schwichtenberg’s approach via multiary sequent terms ◮ x -normality can be represented with lists, eg µ x ( u , u ′ :: [] , ( z ) z ) ✛ x ( u , ( y ) y ( u ′ ( z ) z ) ) ✲ � �� � y / ✛ ∈ xuu ′ ◮ Schwichtenberg considers a family of left rules (one for each k ∈ N 0 ) ⊢ u : A ⊢ u 1 : B 1 . . . ⊢ u k : B k y : C ⊢ v : D x : A ⊃ B 1 ⊃ . . . ⊃ B k ⊃ C ⊢ x ( u , u 1 :: ... :: u k :: [] , ( y ) v ): D ⊃ L k ◮ The µ -nfs are determined by the µ -rule (where a stands for ”append”): x ( u , l , ( y ) y ( u ′ , l ′ , ( z ) v )) → x ( u , a ( l , u ′ :: l ′ ) , ( z ) v ) if y �∈ u ′ , l ′ , v ◮ Permutative rules aim at trivialising generality to x ( u , l , ( z ) z ). ◮ SN holds and implies SN for a restriction of Dyckhoff&P.’s rules.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend