cmc rocket thrust chamber technology status and
play

CMC Rocket Thrust Chamber Technology Status and Perspectives M. - PowerPoint PPT Presentation

DLR-ST-IBT > M. Ortelt / H. Hald / D. Koch > Presentation > AIRBUS DS Space Systems - 6th R&T DAYS > Paris > France, 19.11.2015 Chart 1 CMC Rocket Thrust Chamber Technology Status and Perspectives M. Ortelt, H. Hald,


  1. DLR-ST-IBT > M. Ortelt / H. Hald / D. Koch > Presentation > AIRBUS DS – Space Systems - 6th R&T DAYS > Paris > France, 19.11.2015 • Chart 1 CMC Rocket Thrust Chamber Technology Status and Perspectives M. Ortelt, H. Hald, D. Koch markus.ortelt@dlr.de German Aerospace Center (DLR) Institute of Structures and Design AIRBUS DS – Space Systems - 6 th R&T DAYS, Paris, 19.11.2015, Session 3, WG2 Technologies for Future Liquid Propulsion Knowledge for Tomorrow

  2. DLR-ST-IBT > M. Ortelt / H. Hald / D. Koch > Presentation > AIRBUS DS – Space Systems - 6th R&T DAYS > Paris > France, 19.11.2015 • Chart 2 Outline - Conceptional aspects of the transpiration cooled CMC TCA - Development status - Structural components - Materials - Test data - Some future perspectives for CMC in space propulsion components - Summary & outlook

  3. DLR-ST-IBT > M. Ortelt / H. Hald / D. Koch > Presentation > AIRBUS DS – Space Systems - 6th R&T DAYS > Paris > France, 19.11.2015 • Chart 3 CMC thrust chamber – Design concept Features - Decoupling of single components – no bonding - Decoupling of mechanical and thermal loads - Specific hybrid interface technologies - Selective inner liner design Transpiration cooled CMC thrust chamber – design principle

  4. DLR-ST-IBT > M. Ortelt / H. Hald / D. Koch > Presentation > AIRBUS DS – Space Systems - 6th R&T DAYS > Paris > France, 19.11.2015 • Chart 4 Functional aspects - Standard CFD systems (FLUENT, CFX, …) are constructive (pure flow coupling) - Ongoing tool-development for ‚structure-flow-coupling‘ (TAU)  - Investigations on materials out-flow homogeneity

  5. DLR-ST-IBT > M. Ortelt / H. Hald / D. Koch > Presentation > AIRBUS DS – Space Systems - 6th R&T DAYS > Paris > France, 19.11.2015 • Chart 5 System analysis of transpiration cooling 12% - Comparison of chamber size (scaling) Tw = 800 K dc = 50 mm 10% - 50 mm chamber demonstration dc = 100 mm dc = 200 mm 8% Coolant ratio [ ‐ ] dc = 440 mm dc = 1000 mm 6% - O/F = 5.5 (injector) 4% - Contraction ratio 6.25 2% - Characteristic chamber length l*=1.84 m - 7 % coolant ratio 0% 1 10 100 1000 10000 100000 Vacuum thrust [kN] - Damage free operation 12% - Amount of coolant depends on Tw = 1200 K dc = 50 mm 10% dc = 100 mm - Hotgas conditions, A s , T dc = 200 mm 8% Coolant ratio [ ‐ ] - D + p  required coolant ratio dc = 440 mm 6% dc = 1000 mm - Further coolant ratio reduction potential 4% - Chamber length can be shortened 2% 0% 1 10 100 1000 10000 100000  High operational efficiency predicted Vacuum thrust [kN]

  6. DLR-ST-IBT > M. Ortelt / H. Hald / D. Koch > Presentation > AIRBUS DS – Space Systems - 6th R&T DAYS > Paris > France, 19.11.2015 • Chart 6 Processes for Manufacturing of Nonoxide CMC C, SiC fibers in C, SiC, SiC(N) matrix Polymer Infiltration Liquid Silicon Chemical Vapor Combi-Process and Pyrolysis Infiltration Infiltration (PIP+LSI, CVI+LSI) (PIP) (LSI) (CVI) Focus at DLR Stuttgart preform (e.g. fabrics, filament winding) preform (e.g. fabrics, filament winding) fibrer coating fiber-coating if necessary infiltration (e.g. RTM) infiltration (e.g. RTM) with Si-precursor (e.g. polysilazane) with C-precursor 3-6 times to pyrolysis (inert atmosphere) decrease  carbon matrix porosity siliconisation pyrolysis (inert gas, T>1420 ° C, Si+C  SiC) (inert atmosphere, T~1000 ° C, intermediate machining  stoichiometric SiC-matrix e.g. polysilazane  SiCN-matrix) joining finishing finishing PIP LSI Koch et al., DLR Werkstoffkoll. 2013

  7. DLR-ST-IBT > M. Ortelt / H. Hald / D. Koch > Presentation > AIRBUS DS – Space Systems - 6th R&T DAYS > Paris > France, 19.11.2015 • Chart 7 Processing of Ceramic Matrix Composites (DLR-ST, BT) Autoclave • 30 bar, 350 ° C Warm Press 350 ° C • RTM 300 ° C • Pyrolysis, LSI, 2000 ° C • Machining Center •

  8. DLR-ST-IBT > M. Ortelt / H. Hald / D. Koch > Presentation > AIRBUS DS – Space Systems - 6th R&T DAYS > Paris > France, 19.11.2015 • Chart 8 Thrust chamber – potential CMC derivatives Initial C/C model material LOX-sensitive! Other derivatives damage free after efficiently cooled and non-cooled operation: Oxipol AvA-Z-ISC C/SiCN C/C (CVI) Open porosity  [%] (porosity + permeability k d / k f adaptable by manufacturing process) 10 35 18 7 Density kg/cm 3 2.3 2.6 1.6 1.6

  9. DLR-ST-IBT > M. Ortelt / H. Hald / D. Koch > Presentation > AIRBUS DS – Space Systems - 6th R&T DAYS > Paris > France, 19.11.2015 • Chart 9 CMC thrust chamber – Components Porous metal injector Elements of oxide CMC for the LOX injection Integrated ‚BlackEngine‘ demonstrator,  cyl. 50 mm Porous CMC injector C/C-SiC face-plate Applied injector systems for  cyl. 50 mm Inner liner segment Co-axial injector

  10. DLR-ST-IBT > M. Ortelt / H. Hald / D. Koch > Presentation > AIRBUS DS – Space Systems - 6th R&T DAYS > Paris > France, 19.11.2015 • Chart 10 CMC thrust chamber – mechanical interfaces Characteristic hybrid interface types Bolt interface for CFRP-metal joining Load-de-coupling double-shell nozzle extension with keyed joint elements for CMC-metal joining

  11. DLR-ST-IBT > M. Ortelt / H. Hald / D. Koch > Presentation > AIRBUS DS – Space Systems - 6th R&T DAYS > Paris > France, 19.11.2015 • Chart 11 Thrust chamber - hot gas verification (LOX/LH2; LOX/GH2)  cyl. 50 mm Vulcain contour Structure tests  cyl. 80 mm P8 C/C damages Vulcain contour CMCs damage free C/C damage free near injector!  cyl. 50 mm P8 (2005) Component tests LOX / LH2, 65  70 bar P8, 2008 52 s, 5  6 kg/s, τ = 4.2 % 120 s, p c = 55 bar, LOX / LH2 operation,  = 15 % 90 bar tests Efficiency test Contraction 6.25 P6.1  cyl. 50 mm 2012 CMCs damage free P6.1 firing test Dec 2013 20 s, p c = 55 bar, LOX / GH2 (120 K),  = 9 % Demonstration of the integrated CMC TCA

  12. DLR-ST-IBT > M. Ortelt / H. Hald / D. Koch > Presentation > AIRBUS DS – Space Systems - 6th R&T DAYS > Paris > France, 19.11.2015 • Chart 12 Thrust chamber – pressure loads during hot-run Segmented chamber module  cyl. 50 mm Inner liner: Initial model material C/C O/F = 5.5 Adequate pressure drops at 8 % C/C porosity!

  13. DLR-ST-IBT > M. Ortelt / H. Hald / D. Koch > Presentation > AIRBUS DS – Space Systems - 6th R&T DAYS > Paris > France, 19.11.2015 • Chart 13 Thrust chamber – thermal loads during hot-run P6.1, 2012  cyl. 50 mm Cooling turned off Nominal hotrun-sequence O/F = 2.0 O/F = 5.5;  = 6.72 %; p c  55 bar Max. T surface  1800 K Temperature [K] 1800 � � ����� � 750 �/� U_T_1_8 [K] 1600 U_T_2_8 [K] { U_T_3_8 [K] 1400 U_T_4_8 [K] U_T_1_9 [K] 1200 U_T_2_9 [K] 1000 U_T_3_9 [K] U_T_4_9 [K] 800 600 400 200 0 0 10 20 30 Time [s] 40

  14. DLR-ST-IBT > M. Ortelt / H. Hald / D. Koch > Presentation > AIRBUS DS – Space Systems - 6th R&T DAYS > Paris > France, 19.11.2015 • Chart 14 Design CMC injector (‚ Cone Injector ‘) LH2O/GN2 principle Spray test Features, goals, results DLR ‐ Cone Injector test campaign 'IZ2' ‐ MASS FLOW CURVES 0,3 0,25 M ‐ GH2 ‐ COOL [kg/s] 0,2 0,15 M ‐ GH2 ‐ INJ [kg/s] 0,1 M ‐ LOX ‐ INJ [kg/s] Demonstrator 0,05 0 ‐ 6000 ‐ 1000 4000 9000 14000 Time [s] DLR ‐ Cone injector test campaign 'IZ2' ‐ PRESSURE CURVES 60 50 P_I_GH1 [bar] 40 P_I_GH2 [bar] 30 P_I_GH3 [bar] P_I_LOX [bar] 20 U_P_IGN [bar] 10 Channel morphology 0 Start-up Steady state ‐ 6000 ‐ 1000 4000 9000 14000 Time [s] Initially successful hotruns, P6.1, Dec 2013 Mechanical design Flow design

  15. DLR-ST-IBT > M. Ortelt / H. Hald / D. Koch > Presentation > AIRBUS DS – Space Systems - 6th R&T DAYS > Paris > France, 19.11.2015 • Chart 15 Hyperboloid chamber contour – Orbital propulsion size Hyperboloid geometry Hyperboloid chamber design Perfectly combined with ‚cone injector‘ technology Numerical comparison Comparison referred to typical 500 N class at similar performance - Advantages for - film cooling - transpiration cooling - Composite affine structure manufacturing (winding technique)

  16. DLR-ST-IBT > M. Ortelt / H. Hald / D. Koch > Presentation > AIRBUS DS – Space Systems - 6th R&T DAYS > Paris > France, 19.11.2015 • Chart 16 Hyperboloid chamber contour – Comparison VINCI size Dynamic viscosity Without insert Including insert Heat flux Contour Mass flow Total heat flux Specific heat flux [MW/m 2 ] [kg/s] [MW] Classical 43 16 55 Hyperboloid without insert 42 16 56 Hyperboloid including insert 43 27 52 Performance

  17. DLR-ST-IBT > M. Ortelt / H. Hald / D. Koch > Presentation > AIRBUS DS – Space Systems - 6th R&T DAYS > Paris > France, 19.11.2015 • Chart 17 Future potential - Preburner Features - Standard injector technology concerning … - functional design - mixture ratio - Propellant overhead injected through chamber wall - Long life and light weight structures, similar to CMC Application principle thrust chamber design (oxide CMCs for ox-rich systems)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend