closure relations for non uniform suspensions
play

Closure relations for non-uniform suspensions Kengo Ichiki Andrea - PowerPoint PPT Presentation

Closure relations for non-uniform suspensions Kengo Ichiki Andrea Prosperetti Department of Mechanical Engineering The Johns Hopkins University Supported by DOE grant FG02-99ER14966 November 25, 2003 at APS / DFD (New Jersey) Introduction


  1. Closure relations for non-uniform suspensions Kengo Ichiki Andrea Prosperetti Department of Mechanical Engineering The Johns Hopkins University Supported by DOE grant FG02-99ER14966 November 25, 2003 at APS / DFD (New Jersey)

  2. Introduction Non-uniform suspensions . Practically important: • Shear-induced di ff usivity • Particle migration in Stokes flows • Stratification in sedimentation Uniform suspension is too simple: ^ k • No strain in sedimentation • No slip velocity in shear problem φ φ Important physics vanishes! 0 November 25, 2003 APS / DFD at New Jersey Page 2

  3. Introduction Goal: To derive the constitutive equations of S : viscous stress of the mixture F : interphase force valid for all sedimentation , torque , and shear problems from first-principle simulations by Stokesian Dynamics method (Mo-Sangani 1994) under periodic boundary condition for random hard-sphere configurations with non-uniform weight References: Marchioro et al. , Int. J. Multiphase Flow 26 (2000) 783; 27 (2001) 237. Ichiki and Prosperetti, submitted to Phys. Fluids . November 25, 2003 APS / DFD at New Jersey Page 3

  4. Rheology Uniform suspensions — Shear S µ = 2 µ e E m 1 � ∇ u m + ( ∇ u m ) † � E m = 2 u m : mixture velocity µ : viscosity of the fluid µ e : relative viscosity of the mixture Non-uniform suspensions – Sedimentation E m � 0 and µ e plays a role November 25, 2003 APS / DFD at New Jersey Page 4

  5. Viscous Stress S Closure relation 1 S � ∇ u ∆ + ( ∇ u ∆ ) † � E ∆ = = 2 µ e E m 2 µ − 1 3 ( ∇ · u ∆ ) I + 2 µ ∆ E ∆ 1 � u ∆ ∇ φ + ( u ∆ ∇ φ ) † � E ∇ = + 2 µ ∇ E ∇ 2 − 1 3 ( u ∆ · ∇ φ ) I u ∆ : slip velocity φ : volume fraction November 25, 2003 APS / DFD at New Jersey Page 5

  6. Viscous Stress S – Results 5 0 4.5 E T 4 F 3.5 3 µ e 2.5 2 1.5 1 0.5 0 0 0.1 0.2 0.3 0.4 0.5 volume fraction φ 5 10 Part II Part II average average 8 4 ET ET FT FT FE FE 6 3 EM F2 4 µ∇ µ∆ 2 2 1 0 0 -2 -1 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 volume fraction φ volume fraction φ November 25, 2003 APS / DFD at New Jersey Page 6

  7. Sedimentation Uniform suspensions — Sedimentation F u ∆ = U ( φ ) 6 πµ a u ∆ : slip velocity U ( φ ) : hindrance function F : interphase force Non-uniform suspensions — Shear F = 0 but u ∆ � 0 November 25, 2003 APS / DFD at New Jersey Page 7

  8. Interphase Force F Closure relation F = F 1 u ∆ 6 πµ a F 2 a 2 E m · ∇ φ + F 3 a 2 ∇ 2 u m + F 4 a 2 ∇ × Ω ∆ + F 5 a 2 ( ∇ φ ) × Ω ∆ + F ⊥ a 2 � � ∇ 2 I − ∇∇ + · u ∆ d a 2 u ∆ · � � F ⊥ ∇ 2 I − ∇∇ + φ F � a 2 ∇∇ · u ∆ + d a 2 u ∆ · ( ∇∇ φ ) F � + November 25, 2003 APS / DFD at New Jersey Page 8

  9. Interphase Force F – Results 35 0 30 -2 25 -4 20 -6 F 1 F 2 15 -8 10 -10 Part II 5 E|| -12 F ⊥ 0 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 volume fraction φ volume fraction φ 3 20 10 2 0 -10 1 -20 -30 0 -40 -50 -1 dF ⊥ /d φ F 1 /10 -60 F ⊥ F ⊥ d -2 -70 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 volume fraction φ volume fraction φ November 25, 2003 APS / DFD at New Jersey Page 9

  10. Interphase Force F Closure relation Results and suggestions F 6 πµ a = F 1 u ∆ F 1 = 1 / U ( φ ) + F 2 a 2 E m · ∇ φ F 2 ≈ 2 d F 3 / d φ + F 3 a 2 ∇ 2 u m + F 4 a 2 ∇ × Ω ∆ + F 5 a 2 ( ∇ φ ) × Ω ∆ F 5 ≈ d F 4 / d φ + F ⊥ a 2 � F ⊥ ≈ F 1 / 10 for small φ � ∇ 2 I − ∇∇ · u ∆ d a 2 u ∆ · � � ∇ 2 I − ∇∇ + F ⊥ F ⊥ d ≈ d F ⊥ / d φ φ + F � a 2 ∇∇ · u ∆ F � = F 1 / 10 d a 2 u ∆ · ( ∇∇ φ ) + F � F � d = 0 November 25, 2003 APS / DFD at New Jersey Page 10

  11. Discussions Expected constitutive equation of F : 1 + a 2 ∇ 2 � � F ( F 1 u ∆ ) 6 πµ a = 10 + a 2 ∇ · (2 F 3 E m ) + a 2 ∇ × ( F 4 Ω ∆ ) This suggests a relation between µ e and F 3 : 3 -2 F 3 µ e 2.5 2 1.5 1 0.5 0 0 0.1 0.2 0.3 0.4 0.5 . volume fraction φ November 25, 2003 APS / DFD at New Jersey Page 11

  12. Conclusions • develop a systematic closure procedure for non-uniform suspensions • apply it to S and F • derive the constitutive equations, determine all closure coe ffi cients systematically, valid for both uniform and non-uniform suspensions and for all sedimentation, torque, and shear problems Future plans: • apply the closure procedure to interphase torque T and anti-symmetric part of the stress V • study the relation among the closure coe ffi cients November 25, 2003 APS / DFD at New Jersey Page 12

  13. More Results of S S 2 µ e E m + 2 µ ∆ E ∆ + 2 µ ∇ E ∇ = µ � � + 2 µ 0 a 2 ∇ 2 E ∇ + 2 µ 1 a 2 E ∇ ∇ 2 φ 0.3 2.5 F in II Part II T in II 0.25 S in II 2 average 0.2 ET FT 0.15 1.5 FE µ 0 µ 1 0.1 1 0.05 0 0.5 -0.05 0 -0.1 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0 0.1 0.2 0.3 0.4 0.5 volume fraction φ volume fraction φ November 25, 2003 APS / DFD at New Jersey Page 13

  14. More Results of F 0 4 -0.2 2 -0.4 0 -0.6 -2 F 3 -0.8 -4 -1 -6 -1.2 dF 3 /d φ -8 F 2 /2 E|| F 2 /2 F ⊥ -1.4 Part II -10 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 volume fraction φ volume fraction φ 1 4 0.5 2 0 -0.5 0 -1 -1.5 -2 -2 -2.5 -4 φ dF 4 /d φ -3 F 4 F 5 F 5 -3.5 -6 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 volume fraction φ volume fraction φ November 25, 2003 APS / DFD at New Jersey Page 14

  15. Structure Factor S ( k ) 1.2 1 0.8 S(k) 0.6 0.4 0.2 0 1 2 3 4 5 6 k November 25, 2003 APS / DFD at New Jersey Page 15

  16. Averages and Fitting 1 0.01 0.02 0.03 0.8 0.04 0.05 0.10 0.6 0.15 0.20 F [U] 0 0.25 0.30 0.4 0.35 0.40 0.45 0.2 0.50 0 0 0.2 0.4 0.6 0.8 1 1.2 k November 25, 2003 APS / DFD at New Jersey Page 16

  17. Closure equations of F [ F ] 0 F 1 [ u ∆ ] 0 = F F 1 − k 2 � � � d F 1 � � F 1 − k 2 F � � [ F ] � [ u ∆ ] � d φ − k 2 F � [ u ∆ ] 0 = F + φ F F d 10 1 − k 2 � � � d F 1 � � F 1 − k 2 F ⊥ � d φ − k 2 F ⊥ [ u ∆ ] 0 [ F ] ⊥ [ u ∆ ] ⊥ = F + φ F d F 10 − F 3 k 2 [ u m ] ⊥ F + F 4 k [ Ω ∆ ] ⊥ F � F 1 − k 2 F ⊥ � [ F ] ⊥ [ u ∆ ] ⊥ T − F 3 k 2 [ u m ] ⊥ T + F 4 k [ Ω ∆ ] ⊥ = T T 1 − k 2 � � k [ Ω ∆ ] 0 + F 5 φ T 10 1 − k 2 � � � F 1 − k 2 F � � [ F ] � [ u ∆ ] � = E + F 2 k φ E 10 1 − k 2 � � � F 1 − k 2 F ⊥ � E − F 3 k 2 [ u m ] ⊥ [ F ] ⊥ [ u ∆ ] ⊥ − F 4 k [ Ω ∆ ] ⊥ = E + F 2 k φ E E 10 November 25, 2003 APS / DFD at New Jersey Page 17

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend