close binary progenitors of gamma ray bursts and
play

Close Binary Progenitors Of Gamma Ray Bursts And Hypernovae Maxim - PowerPoint PPT Presentation

Close Binary Progenitors Of Gamma Ray Bursts And Hypernovae Maxim Barkov MPI-K Heidelberg, Germany Space Research Institute, Russia Serguei Komissarov University of Leeds, UK 30/06/2011 30/06/2011 HEPRO-III, Barcelona 1 Plan of this talk


  1. Close Binary Progenitors Of Gamma Ray Bursts And Hypernovae Maxim Barkov MPI-K Heidelberg, Germany Space Research Institute, Russia Serguei Komissarov University of Leeds, UK 30/06/2011 30/06/2011 HEPRO-III, Barcelona 1

  2. Plan of this talk • Gamma-Ray-Bursts – very brief review, • Models of Central Engines, • Numerical simulations I: Magnetic flux, • Magnetic Unloading, • Realistic initial conditions, • Numerical simulations II: Collapsar model, • Common Envelop and X-Ray flares, • Fast Recycling of Neutron Star as Hypernova engine, • Conclusions 30/06/2011 30/06/2011 HEPRO-III, Barcelona 2

  3. I. Gamma-Ray-Bursts Discovery: Vela satellite (Klebesadel et al.1973); Konus satellite (Mazets et al. 1974); Cosmological origin: 1. Beppo-SAX satellite – X-ray afterglows (arc-minute resolution) , optical afterglows – redshift measurements – identification of host galaxies (Kulkarni et al. 1996, Metzger et al. 1997, etc) ‏ 2. Compton observatory – isotropic distribution (Meegan et al. 1992); Supernova association of long duration GRBs: 1. Association with star-forming galaxies/regions of galaxies; 2. A few solid identifications with supernovae, SN 1998bw, SN 2003dh and others... 3. SN humps in light curves of optical afterglows. 4. High-velocity supernovae ( 30,000km/s) or hypernovae (10 52 erg). 30/06/2011 30/06/2011 HEPRO-III, Barcelona 3

  4. Spectral properties: Non-thermal spectrum from 0.1MeV to GeV: Bimodal distribution (two types of GRBs?): long duration GRBs short duration GRBs very long 30/06/2011 30/06/2011 HEPRO-III, Barcelona 4 duration GRBs

  5. Variability: • smooth fast rise + decay; • several peaks; • numerous peaks with substructure down to milliseconds Total power: assumption of isotropic emission Inferred high speed: Too high opacity to unless Lorentz factor > 100 30/06/2011 30/06/2011 HEPRO-III, Barcelona 5

  6. The possible scenario of GRB formation in close binary system with BH: 30/06/2011 HEPRO-III, Barcelona 7

  7. II. Relativistic jet/pancake model of GRBs and afterglows: jet at birth pancake later (we are here) 30/06/2011 30/06/2011 HEPRO-III, Barcelona 8

  8. Merge of compact stars – origin of short duration GRBs? Paczynsky (1986); Goodman (1986); Eichler et al.(1989); Neutron star + Neutron star Black hole + compact disk Neutron star + Black hole White dwarf + Black hole Burst duration: 0.1s – 1.0s Released binding energy: 30/06/2011 30/06/2011 HEPRO-III, Barcelona 9

  9. Collapsars – origin of long duration GRBs? Woosley (1993) ‏ Iron core collapses into a black hole: MacFadyen & Woosley (1999) ‏ “failed supernova”. Rotating envelope forms hyper-accreting disk Collapsing envelope Accretion disk Accretion shock The disk is fed by collapsing envelope. Burst duration > a few seconds 30/06/2011 30/06/2011 HEPRO-III, Barcelona 10

  10. Mechanisms for tapping the disk energy Neutrino heating Magnetic braking fireball MHD wind B B Eichler et al.(1989), Aloy et al.(2000) Blandford & Payne (1982) ‏ MacFadyen & Woosley (1999) Proga et al. (2003) ‏ Nagataki et al.(2006), Birkl et al (2007) Fujimoto et al.(2006) ‏ Zalamea & Beloborodov (2008,2010) (???) ‏ Mizuno et al.(2004) 30/06/2011 30/06/2011 HEPRO-III, Barcelona 11

  11. 30/06/2011 HEPRO-III, Barcelona 12

  12. III. Numerical simulations Setup (Barkov & Komissarov 2008a,b) (Komissarov & Barkov 2009) Uniform magnetization black hole R=4500km M=3M sun Y = 4x10 27 -4x10 28 Gcm -2 a=0.9 Rotation:     2 3 sin min / , 1 l l r r 0 c r c =6.3x10 3 km v l 0 = 10 17 cm 2 s -1 B v v • 2D axisymmetric v GRMHD; v • Kerr-Schild metric; • Realistic EOS; B • Neutrino cooling; outer boundary, free fall • Starts at 1s from R= 2.5x10 4 km accretion collapse onset. (Bethe 1990) Lasts for < 1s 30/06/2011 30/06/2011 HEPRO-III, Barcelona 13

  13. Free fall model of collapsing star (Bethe, 1990) ‏ radial velocity: mass density:  1 / 2   1   t M      accretion rate:   1 M 0 . 1 C M s   1 sun     1 s 10 M sun Gravity: gravitational field of Black Hole only (Kerr metric); no self-gravity; Microphysics: neutrino cooling ; realistic equation of state, (HELM, Timmes & Swesty, 2000); dissociation of nuclei (Ardeljan et al., 2005); Ideal Relativistic MHD - no physical resistivity (only numerical); 30/06/2011 30/06/2011 HEPRO-III, Barcelona 14

  14. Model:A unit length=4.5km t=0.24s C 1 =9; B p =3x10 10 G log 10  (g/cm 3 ) log 10 B  /B p log 10 P/P m magnetic field lines, and velocity vectors 30/06/2011 30/06/2011 HEPRO-III, Barcelona 15

  15. Model:A unit length=4.5km t=0.31s C 1 =9; B p =3x10 10 G log 10  (g/cm 3 ) magnetic field lines, and velocity vectors 30/06/2011 30/06/2011 HEPRO-III, Barcelona 16

  16. Jets are powered mainly by the black hole via the Blandford-Znajek mechanism !! Model: C • No explosion if a=0; • Jets originate from the black hole; • ~90% of total magnetic flux is accumulated by the black hole; • Energy flux in the ouflow ~ energy flux through the horizon (disk contribution < 10%); • Theoretical BZ power:        Y   50 2 2 51 1 3 . 6 10 0 . 48 10 E BZ f a M erg s 27 2 30/06/2011 30/06/2011 HEPRO-III, Barcelona 17

  17.     17 2 1     l 10 cm s 1 M 0 . 15 M s C 3 0 SUN 1    10 a 0 . 9 B 0 . 3 10 G   P log 10    ( ) g log P 10   m 30/06/2011 30/06/2011 HEPRO-III, Barcelona 18

  18. IV. Magnetic Unloading What is the condition for activation of the BZ-mechanism ? 1) MHD waves must be able to escape from the black hole ergosphere to infinity for the BZ-mechanism to operate, otherwise accretion is expected. or 2) The torque of magnetic lines from BH should be sufficient to stop      2 / 1 (???) E BZ M c accretion   (Barkov & Komissarov 2008b)    Y  50 2 2 E BZ 3 . 6 10 f a M 27 2 (Komissarov & Barkov 2009) 2   a    f a 2   2 1 1 a 30/06/2011 30/06/2011 HEPRO-III, Barcelona 20

  19. The disk accretion relaxes the explosion      conditions. The MF lines’ shape reduces 2 E BZ / M c 1 / 10 the local accretion rate. 30/06/2011 30/06/2011 HEPRO-III, Barcelona 21

  20. V. Realistic initial conditions • Strong magnetic field suppresses the differential rotation in the star (Spruit et. al., 2006). • Magnetic dynamo can’t generate a large magnetic flux, a relict magnetic field is necessary. (see observational evidences in Bychkov et al. 2009) • In close binary systems we could expect fast solid body rotation. • The most promising candidate for long GRBs is Wolf-Rayet stars. 30/06/2011 30/06/2011 HEPRO-III, Barcelona 22

  21. Simple model: Barkov & Komissarov (2010) R star If l(r)<l cr then matter falling to BH directly If l(r)>l cr then ( r ) matter goes to disk l and after that to BH BH Agreement with model Shibata&Shapiro (2002) on level 1% 30/06/2011 30/06/2011 HEPRO-III, Barcelona 23

  22. Power low density distribution model    r 3 30/06/2011 30/06/2011 HEPRO-III, Barcelona 24

  23. Realistic model Heger at el (2004) M=35 M sun , M WR =13 M sun 30/06/2011 30/06/2011 HEPRO-III, Barcelona 25

  24. Realistic model Realistic model Heger at el (2004) M=20 M sun , M WR =7 M sun M=35 M sun , M WR =13 M sun neutrino limit BZ limit 30/06/2011 30/06/2011 HEPRO-III, Barcelona 26

  25. VI. Numerical simulations II: Collapsar model GR MHD Setup 2D black hole M=10 M sun Bethe’s v a=0.45-0.6 free fall model, B T=17 s, C 1 =23 v v v Dipolar v magnetic field Initially solid B body rotation Uniform magnetization R=150000km Barkov & Komissarov (2010) B 0 = 1.4x10 7 -8x10 7 G 30/06/2011 30/06/2011 HEPRO-III, Barcelona 27

  26. In some cases (30%) one side jets are formed. 30/06/2011 HEPRO-III, Barcelona 28

  27. a=0.6 Ψ =3x10 28 a=0.45 Ψ =6x10 28     E 10 M       1 sun V 170 km s     kick 52     10 ergs M bh Ψ 28 dM BH /dt η Model a B 0,7 L 51 A 0.6 1 1.4 - - - B 0.6 3 4.2 0.44 0.017 0.0144 C 0.45 6 8.4 1.04 0.012 0.049 30/06/2011 30/06/2011 HEPRO-III, Barcelona 29

  28. VII Common Envelop (CE): few Normal WRS seconds black hole spiralling And Black Hole < 1000 seconds disk formed MBH left behind 5000 seconds jets produced 30/06/2011 30/06/2011 HEPRO-III, Barcelona 30

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend