climate sensitivity uncertainties learning
play

Climate Sensitivity: Uncertainties & Learning Workshop on GHG - PowerPoint PPT Presentation

Climate Sensitivity: Uncertainties & Learning Workshop on GHG Stabilization Scenarios Tsukuba , Japan, 23 January 2004 Michael Schlesinger and Natasha Andronova Climate Research Group Department of Atmospheric Sciences University of


  1. Climate Sensitivity: Uncertainties & Learning Workshop on GHG Stabilization Scenarios Tsukuba , Japan, 23 January 2004 Michael Schlesinger and Natasha Andronova Climate Research Group Department of Atmospheric Sciences University of Illinois at Urbana-Champaign

  2. Introduction • Climate sensitivity, ∆ T 2x : The change in global-average near-surface temperature resulting from a doubling of the preindustrial carbon dioxide concentration. • If ∆ T 2x is small, then the problem of human-induced climate change may not be acute. If ∆ T 2x is large, then human-induced climate change may be one of the most severe problems of the 21st century.

  3. Outline • Primer on Climate Sensitivity, ∆ T 2x • Estimates of Climate Sensitivity, ∆ T 2x • Uncertainty in ∆ T 2x due to uncertainty in the radiative forcing • Causes of temperature changes from 1856 to present • Learning ∆ T 2x over time

  4. dH t = − Δ T t ( ) ( ) + F t ( ) dt λ • F(t): Radiative Forcing – The change in the net downward radiative flux at some level in the atmosphere, usually the tropopause, caused by some “external” factor, such as changed solar insolation or GHGs. • Instantaneous Radiative Forcing – Radiative forcing before any temperature changes. • Adjusted Radiative Forcing – Radiative forcing after temperatures above the tropopause change, with tropospheric temperatures held constant.

  5. dH t = − Δ T t ( ) ( ) + F t ( ) dt λ • dH(t)/dt – The change in heat storage of the climate system; on earth, essentially the heat taken up or lost by the ocean. • λ – Climate Sensitivity • Equilibrium Climate Sensitivity , λ eq – F(t) = constant and sufficient time elapsed for dH/dt = 0. ∆ T = ∆ T eq . – λ = λ eq = ∆ T eq /F ; e.g., λ eq = ∆ T 2x /F 2x . F 2x = 3.71 W/m2. ∆ T 2x taken as a synonym for λ eq .

  6. ∆ T 2x Simulated By The UIUC Stratosphere/Troposphere General Circulation Model 2xCO2 – 1xCO2 surface air temperature (°C) 3.5 3.5 3 3 WO PCHEM 2.5 2.5 2 2 W PCHEM 1.5 1.5 1 1 0.5 0.5 y = m1*(1-exp(-0.5*M0/m1)) y = m1*(1-exp(-0.5*M0/m1)) Value Error Value Error m1 2.2227 0.01223 m1 2.3625 0.011291 0 0 Chisq 14.79 NA Chisq 23.68 NA 0.82407 NA R 2 0.76598 NA R 2 -0.5 -0.5 0 10 20 30 40 50 60 Time (years)

  7. Outline • Primer on Climate Sensitivity, ∆ T 2x • Estimates of Climate Sensitivity, ∆ T 2x • Uncertainty in ∆ T 2x due to uncertainty in the radiative forcing • Causes of temperature changes from 1856 to present • Learning ∆ T 2x over time

  8. 1 Cumulative distribution function 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 Arrhenius Range -0.1 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 Climate sensitivity, ∆ T 2x (°C)

  9. 1 Cumulative distribution function 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 EBM Arrhenius Range -0.1 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 Climate sensitivity, ∆ T 2x (°C)

  10. 1 Cumulative distribution function 0.9 0.8 RCM 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 EBM Arrhenius Range -0.1 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 Climate sensitivity, ∆ T 2x (°C)

  11. 1 Cumulative distribution function 0.9 0.8 RCM 0.7 GCM 0.6 0.5 0.4 0.3 0.2 0.1 0 EBM Arrhenius Range -0.1 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 Climate sensitivity, ∆ T 2x (°C)

  12. 1 0.9 Cumulative distribution function Paleo 0.8 RCM 0.7 0.6 GCM 0.5 0.4 0.3 0.2 0.1 0 Arrhenius -0.1 EBM Range -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 Climate sensitivity, ∆ T 2x (°C)

  13. • U.S. National Research Council study chaired by Jule Charney wrote: "We estimate the most probable global warming for a doubling of CO 2 to be near 3°C with a probable error of ±1.5°C". • The Intergovernmental Panel on Climate Change interpreted the findings of the Charney report to mean that 1.5°C ≤ ∆ T 2x ≤ 4.5°C. • We assert that this interpretation is incorrect and that the correct interpretation is that there is only a 50% likelihood that ∆ T 2x lies within 1.5° to 4.5°C.

  14. 1 Cumulative distribution function 0.9 Paleo 0.8 RCM 0.7 NRC 97 79 0.6 0.5 0.4 0.3 0.2 GCM 0.1 0 Range Arrhenius -0.1 EBM -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 Climate sensitivity, ∆ T 2x (°C)

  15. 1 Cumulative distribution function 0.9 Paleo 0.8 RCM 0.7 NRC 97 79 0.6 0.5 0.4 0.3 0.2 GCM 0.1 0 IPCC Range Arrhenius -0.1 EBM -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 Climate sensitivity, ∆ T 2x (°C)

  16. 1 0.9 Cumulative distribution function 0.8 0.7 "Expert" NRC 97 opinion 79 0.6 0.5 0.4 0.3 0.2 0.1 0 IPCC Arrhenius Range -0.1 EBM -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 Climate sensitivity, ∆ T 2x (°C)

  17. 1 Cumulative distribution function 0.9 Expert Forest et al 0.8 Expert Wigley & Raper 0.7 Tol & de Vos 0.6 0.5 0.4 "Expert" 0.3 opinion 0.2 0.1 0 IPCC NRC 97 79 Arrhenius Range -0.1 EBM -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 Climate sensitivity, ∆ T 2x (°C)

  18. 1 Cumulative distribution function 0.9 Andronova & Schlesinger 0.8 0.7 0.6 Uniform 0.5 Uniform Gregory et al Forest et al Forest et al Gregory et al 0.4 0.3 0.2 Knutti et al Knutti et al 0.1 0 IPCC NRC 79 Arrhenius -0.1 EBM Range -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 Climate sensitivity, ∆ T 2x (°C)

  19. 1 Cumulative distribution function 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 IPCC Arrhenius -0.1 EBM Range -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 Climate sensitivity, ∆ T 2x (°C) Arrhenius (1896) GCM Expert Gregory et al. Knutti et al. EBM Paleo Uniform Forrest et al. Andronova & Schlesinger Tol & de Vos RCM IPCC Expert Forrest et al. Expert Wigley & Raper NRC 79

  20. Outline • Primer on Climate Sensitivity, ∆ T 2x • Estimates of Climate Sensitivity, ∆ T 2x • Uncertainty in ∆ T 2x due to uncertainty in the radiative forcing • Causes of temperature changes from 1856 to present • Learning ∆ T 2x over time

  21. Simple climate/ocean model Δ F oi F λ Δ λ Li k N Atmosphere Atmosphere β a over Ocean over Land k S λ Na,o λ Sa,o λ a ,L β o Mixed Layer Land Interior Ocean Bottom Ocean σ o , i σ L , i Δ F oN Δ F oS λ λ NH Atmosphere SH Atmosphere β a over Ocean over Ocean λ Sa,o λ Na,o NH Mixed Layer SH Mixed Layer W W κ κ β o NH Polar Ocean SH Polar Ocean NH Interior Ocean SH Interior Ocean κ κ W W β o W κ W κ NH Bottom β o SH Bottom Ocean Ocean σ o, N σ o, S

  22. Radiative Forcing 2.5 GHG 2 Sulphate aerosol 1.5 Tropospheric ozone Total anthropogenic 1 0.5 0 -0.5 -1 (A) -1.5 1750 1800 1850 1900 1950 2000 1 0 -1 -2 -3 -4 -5 (B) -6 1750 1800 1850 1900 1950 2000 1369 1368 1367 1366 1365 1364 LN HS (C) 1363 1750 1800 1850 1900 1950 2000 Year

  23. 0.6 (A) (NH+SH)/2 o C 0.4 Temperature Departure, Temperature Changes Observed Surface Air Obs 0.2 0 -0.2 -0.4 -0.6 1850 1880 1910 1940 1970 2000 0.6 (B) (NH–SH) o C Temperature Departure, 0.4 Obs 0.2 0 -0.2 -0.4 1850 1880 1910 1940 1970 2000

  24. Simulated Vs. Observed Surface Air Temperature Change 0.6 0.6 (B) (NH–SH) (A) (NH+SH)/2 o C o C 0.4 Temperature Departure, 0.4 Temperature Departure, Obs Obs 0.2 0.2 0 0 -0.2 -0.2 Sim(GTAS) -0.4 Sim(GTAS) -0.6 -0.4 1850 1880 1910 1940 1970 2000 1850 1880 1910 1940 1970 2000 0.4 0.3 (C) (NH+SH)/2 (D) NH–SH o C ) o C ) 0.3 0.2 Obs – sim temperature ( Obs – sim temperature ( 0.2 0.1 0.1 0 0 -0.1 -0.1 -0.2 Res = Obs – Sim(GTAS) -0.2 -0.3 Res = Obs – Sim(GTAS) -0.3 -0.4 1850 1880 1910 1940 1970 2000 1850 1880 1910 1940 1970 2000

  25. Schlesinger & Ramankutty (1994) 0.08 100 IPCC 92 (1858-1992) Eigenvalues λ k / Total Variance x 100 (%) N = 135, M = 40 0.06 0.04 Mode Time Series (°C) ∧ 10 X 1 0.02 0 ∧ X 2 -0.02 1 -0.04 -0.06 A C -0.08 0 5 10 15 20 25 30 35 40 1850 1870 1890 1910 1930 1950 1970 1990 Mode Year 0.4 0.3 Detrended Temperature Anomaly (°C) 0.3 ∧ ∧ X 1 + X 2 0.2 0.2 o C) ρ 1 Eigenvectors (EOFs, 0.1 0.1 0 0.0 -0.1 -0.1 ρ 2 -0.2 -0.2 IPCC -0.3 Obs D B -0.4 -0.3 0 5 10 15 20 25 30 35 40 1850 1870 1890 1910 1930 1950 1970 1990 Year i (years)

  26. Schlesinger & Ramankutty (1994) 180 120W 60W 0 60E 120E 180 90N 90N 60N 60N 1 2 3 5 5 30N 30N 4 10 8 0 0 7 11 6 30S 30S 9 9 60S 60S 90S 90S 180 120W 60W 0 60E 120E 180

  27. ∆ T 2x Versus Radiative Forcing 5 4 IPCC Range ∆ T 2x (°C) 3 2 1 0 GT GTA GTAV1 GTAS GTASV1 GTASV2 Radiative forcing model

  28. Conclusion 1 • To reduce the uncertainty in climate sensitivity requires reducing the uncertainty in the radiative forcing, not only by aerosols, but also by the Sun and volcanoes.

  29. Outline • Primer on Climate Sensitivity, ∆ T 2x • Estimates of Climate Sensitivity, ∆ T 2x • Uncertainty in ∆ T 2x due to uncertainty in the radiative forcing • Causes of temperature changes from 1856 to present • Learning ∆ T 2x over time

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend