christoffel and fibonacci tiles
play

Christoffel and Fibonacci Tiles S ebastien Labb e Laboratoire de - PowerPoint PPT Presentation

Christoffel and Fibonacci Tiles S ebastien Labb e Laboratoire de Combinatoire et dInformatique Math ematique Universit e du Qu ebec ` a Montr eal DGCI 2009 September 30 th , 2009 With : Alexandre Blondin Mass e, Sre


  1. Christoffel and Fibonacci Tiles S´ ebastien Labb´ e Laboratoire de Combinatoire et d’Informatique Math´ ematique Universit´ e du Qu´ ebec ` a Montr´ eal DGCI 2009 September 30 th , 2009 With : Alexandre Blondin Mass´ e, Sreˇ cko Brlek and Ariane Garon S´ ebastien Labb´ e (LaCIM) Christoffel and Fibonacci Tiles DGCI 2009 1 / 24

  2. Outline The Tiling by Translation Problem 1 Discrete Figures Tilings Beauquier and Nivat Hexagonal and Square Tilings Double Square Tiles 2 Christoffel Tiles Fibonacci Tiles Conclusion 3 S´ ebastien Labb´ e (LaCIM) Christoffel and Fibonacci Tiles DGCI 2009 2 / 24

  3. Discrete Figures and Polyominoes • Discrete plane : Z 2 • Definition : A polyomino is a finite, 4-connected subset of the plane, without holes. ❆ ✁ ❆ ✁ ❆ ✁ ❆ ✁ ✁ ❆ ✁ ❆ ✁ ❆ ✁ ❆ ✁ ❆ ✁ ❆ S´ ebastien Labb´ e (LaCIM) Christoffel and Fibonacci Tiles DGCI 2009 3 / 24

  4. The Tiling by Translation Problem Let P be a polyomino. We say that P tiles the plane if there exists a set T of non-overlapping translated copies of P that covers all the plane. P is called a tile if it tiles the plane. S´ ebastien Labb´ e (LaCIM) Christoffel and Fibonacci Tiles DGCI 2009 4 / 24

  5. The Tiling by Translation Problem Let P be a polyomino. We say that P tiles the plane if there exists a set T of non-overlapping translated copies of P that covers all the plane. P is called a tile if it tiles the plane. Problem Does a given polyomino P tile the plane? S´ ebastien Labb´ e (LaCIM) Christoffel and Fibonacci Tiles DGCI 2009 4 / 24

  6. S´ ebastien Labb´ e (LaCIM) Christoffel and Fibonacci Tiles DGCI 2009 5 / 24

  7. S´ ebastien Labb´ e (LaCIM) Christoffel and Fibonacci Tiles DGCI 2009 5 / 24

  8. S´ ebastien Labb´ e (LaCIM) Christoffel and Fibonacci Tiles DGCI 2009 5 / 24

  9. S´ ebastien Labb´ e (LaCIM) Christoffel and Fibonacci Tiles DGCI 2009 5 / 24

  10. S´ ebastien Labb´ e (LaCIM) Christoffel and Fibonacci Tiles DGCI 2009 5 / 24

  11. S´ ebastien Labb´ e (LaCIM) Christoffel and Fibonacci Tiles DGCI 2009 5 / 24

  12. S´ ebastien Labb´ e (LaCIM) Christoffel and Fibonacci Tiles DGCI 2009 5 / 24

  13. S´ ebastien Labb´ e (LaCIM) Christoffel and Fibonacci Tiles DGCI 2009 5 / 24

  14. S´ ebastien Labb´ e (LaCIM) Christoffel and Fibonacci Tiles DGCI 2009 5 / 24

  15. Freeman Chain Code � � Σ = a , a , b , b a → b ↑ a ← b ↓ S´ ebastien Labb´ e (LaCIM) Christoffel and Fibonacci Tiles DGCI 2009 6 / 24

  16. Freeman Chain Code � � Σ = a , a , b , b a ¯ a → b ↑ a ← b ↓ ¯ b b ¯ a ¯ ¯ b b b b ¯ a ¯ a a ¯ ¯ b b ba ba ¯ ¯ ¯ b b b b a ¯ ¯ b b b b a a w = ababbabbabbabbbbabaabbabbabb S´ ebastien Labb´ e (LaCIM) Christoffel and Fibonacci Tiles DGCI 2009 6 / 24

  17. Freeman Chain Code � � Σ = a , a , b , b ¯ a a → b ↑ a ← b ↓ ¯ b b a ¯ Any conjugate w ′ of w ¯ ¯ b b b b a ¯ ¯ a ¯ a codes the same polyomino. ¯ b b ba ba w and w ′ are conjugate if ¯ ¯ ¯ b b b b there exist u , v ∈ Σ ∗ such that a w = uv and w ′ = vu . ¯ ¯ b b b b a a w = ababbabbabbabbbbabaabbabbabb S´ ebastien Labb´ e (LaCIM) Christoffel and Fibonacci Tiles DGCI 2009 6 / 24

  18. Freeman Chain Code � � Σ = a , a , b , b ¯ a a → b ↑ a ← b ↓ ¯ b b ¯ a Any conjugate w ′ of w ¯ ¯ b b b b ¯ a a ¯ a ¯ codes the same polyomino. ¯ b b ba ba w and w ′ are conjugate if ¯ ¯ ¯ b b b b there exist u , v ∈ Σ ∗ such that a w = uv and w ′ = vu . ¯ ¯ b b b b a a w ≡ ababbabbabbabbbbabaabbabbabb S´ ebastien Labb´ e (LaCIM) Christoffel and Fibonacci Tiles DGCI 2009 6 / 24

  19. Freeman Chain Code � � Σ = a , a , b , b ¯ a a → b ↑ a ← b ↓ ¯ b b ¯ a Any conjugate w ′ of w ¯ ¯ b b b b ¯ a a ¯ a ¯ codes the same polyomino. ¯ b b ba ba w and w ′ are conjugate if ¯ ¯ ¯ b b b b there exist u , v ∈ Σ ∗ such that a w = uv and w ′ = vu . ¯ ¯ b b b b a a w ≡ ababbabbabbabbbbabaabbabbabb S´ ebastien Labb´ e (LaCIM) Christoffel and Fibonacci Tiles DGCI 2009 6 / 24

  20. Beauquier and Nivat (1991) Characterization : A polyomino P tiles the plane if and only if there exist X , Y , Z ∈ Σ ∗ such that w ≡ XYZ � X � Y � Z . ✻ X = a a b a b a b t t � ✛ X = b a b a b a a hexagon tiles square tiles ✭✭✭PPPP ✘✘✘✘✘ ✘ ❅ � Y ✘✘✘✘✘ ✘ � � X Y � ❅ ❅ ❅ X � Z � ❅ Z X Y ❅ ❅ ✘✘✘✘✘ ✘✘✘✘✘ ✘ ✘ � ✭✭✭PPPP ❅ X PPPP Y X ❅ ❅ ❅ ✭✭✭PPPP ✭ ✭ X ✘ ✘ Y ❅ ✘✘✘✘✘ ✘✘✘✘✘ � ✭ � Y Y Y ❅ � � ❅ ❅ X X � ❅ Y � ❅ Z � � X X Y ❅ ❅ ✘✘✘✘✘ ✘ � Z � ❅ X Y Z PPPP ❅ ❅ Z X ✘ X ❅ ✘✘✘✘✘ ✭ Y Y ✭ PPPP ✭ X ✭ ❅ Y ✭ ✭ S´ ebastien Labb´ e (LaCIM) Christoffel and Fibonacci Tiles DGCI 2009 7 / 24

  21. Maurits Cornelis Escher (1898-1972). Hexagonal tiling. Square tiling. S´ ebastien Labb´ e (LaCIM) Christoffel and Fibonacci Tiles DGCI 2009 8 / 24

  22. Hexagonal Tilings There are polyominoes admitting many hexagon tilings: A 1 × n rectangle tiles the plane as an hexagon in n − 1 ways and as a square in only 1 way. S´ ebastien Labb´ e (LaCIM) Christoffel and Fibonacci Tiles DGCI 2009 9 / 24

  23. Hexagonal Tilings There are polyominoes admitting many hexagon tilings: A 1 × n rectangle tiles the plane as an hexagon in n − 1 ways and as a square in only 1 way. S´ ebastien Labb´ e (LaCIM) Christoffel and Fibonacci Tiles DGCI 2009 9 / 24

  24. Hexagonal Tilings There are polyominoes admitting many hexagon tilings: A 1 × n rectangle tiles the plane as an hexagon in n − 1 ways and as a square in only 1 way. S´ ebastien Labb´ e (LaCIM) Christoffel and Fibonacci Tiles DGCI 2009 9 / 24

  25. Hexagonal Tilings There are polyominoes admitting many hexagon tilings: A 1 × n rectangle tiles the plane as an hexagon in n − 1 ways and as a square in only 1 way. S´ ebastien Labb´ e (LaCIM) Christoffel and Fibonacci Tiles DGCI 2009 9 / 24

  26. Hexagonal Tilings There are polyominoes admitting many hexagon tilings: A 1 × n rectangle tiles the plane as an hexagon in n − 1 ways and as a square in only 1 way. S´ ebastien Labb´ e (LaCIM) Christoffel and Fibonacci Tiles DGCI 2009 9 / 24

  27. Hexagonal Tilings There are polyominoes admitting many hexagon tilings: A 1 × n rectangle tiles the plane as an hexagon in n − 1 ways and as a square in only 1 way. S´ ebastien Labb´ e (LaCIM) Christoffel and Fibonacci Tiles DGCI 2009 9 / 24

  28. Hexagonal Tilings There are polyominoes admitting many hexagon tilings: A 1 × n rectangle tiles the plane as an hexagon in n − 1 ways and as a square in only 1 way. S´ ebastien Labb´ e (LaCIM) Christoffel and Fibonacci Tiles DGCI 2009 9 / 24

  29. Square Tilings The pentamino has two distinct square factorizations: S´ ebastien Labb´ e (LaCIM) Christoffel and Fibonacci Tiles DGCI 2009 10 / 24

  30. Square Tilings The pentamino has two distinct square factorizations: S´ ebastien Labb´ e (LaCIM) Christoffel and Fibonacci Tiles DGCI 2009 10 / 24

  31. Square Tilings The pentamino has two distinct square factorizations: S´ ebastien Labb´ e (LaCIM) Christoffel and Fibonacci Tiles DGCI 2009 10 / 24

  32. Square Tilings The pentamino has two distinct square factorizations: S´ ebastien Labb´ e (LaCIM) Christoffel and Fibonacci Tiles DGCI 2009 10 / 24

  33. Square Tilings The pentamino has two distinct square factorizations: S´ ebastien Labb´ e (LaCIM) Christoffel and Fibonacci Tiles DGCI 2009 10 / 24

  34. Square Tilings The pentamino has two distinct square factorizations: S´ ebastien Labb´ e (LaCIM) Christoffel and Fibonacci Tiles DGCI 2009 10 / 24

  35. Square Tilings The pentamino has two distinct square factorizations: S´ ebastien Labb´ e (LaCIM) Christoffel and Fibonacci Tiles DGCI 2009 10 / 24

  36. Square Tilings The pentamino has two distinct square factorizations: S´ ebastien Labb´ e (LaCIM) Christoffel and Fibonacci Tiles DGCI 2009 10 / 24

  37. Square Tilings The pentamino has two distinct square factorizations: S´ ebastien Labb´ e (LaCIM) Christoffel and Fibonacci Tiles DGCI 2009 10 / 24

  38. Square Tilings The pentamino has two distinct square factorizations: S´ ebastien Labb´ e (LaCIM) Christoffel and Fibonacci Tiles DGCI 2009 10 / 24

  39. Square Tilings The pentamino has two distinct square factorizations: S´ ebastien Labb´ e (LaCIM) Christoffel and Fibonacci Tiles DGCI 2009 10 / 24

  40. Square Tilings The pentamino has two distinct square factorizations: S´ ebastien Labb´ e (LaCIM) Christoffel and Fibonacci Tiles DGCI 2009 10 / 24

  41. Square Tilings The pentamino has two distinct square factorizations: Conjecture (Brlek, Dulucq, F´ edou, Proven¸ cal 2007) A tile has at most 2 square factorizations. S´ ebastien Labb´ e (LaCIM) Christoffel and Fibonacci Tiles DGCI 2009 10 / 24

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend