choosing with the worst in mind a reference dependent
play

Choosing with the Worst in Mind: A Reference-Dependent Model Gerelt - PowerPoint PPT Presentation

Choosing with the Worst in Mind: A Reference-Dependent Model Gerelt Tserenjigmid Caltech Bounded Rationality in Choice Conference 2015 Gerelt Tserenjigmid A Reference-Dependent Model Motivation A new axiomatic model of reference-dependent


  1. Choosing with the Worst in Mind: A Reference-Dependent Model Gerelt Tserenjigmid Caltech Bounded Rationality in Choice Conference 2015 Gerelt Tserenjigmid A Reference-Dependent Model

  2. Motivation A new axiomatic model of reference-dependent preferences in which reference points are menu-dependent. Preference Reversal: a over b in E1, but b over a in E2. Purpose: Explicitly model reference points, As restrictive as possible, but consistent with two well-known preference reversals (compromise and attraction effects). Gerelt Tserenjigmid A Reference-Dependent Model

  3. Motivation Two Preference Reversals ( x , p ) is chosen over ( y , q ) from binary menu { ( x , p ) , ( y , q ) } , but ( y , q ) is chosen over ( x , p ) when ( z , · ) is added. A2 A2 ( y , q ) ( y , q ) q q ( x , p ) ( x , p ) p p z y x z y x A1 A1 Compromise Effect Attraction Effect well documented in experimental and marketing studies: consumer choice, risky choice, choice over policy issues

  4. Motivation Two Preference Reversals ( x , p ) is chosen over ( y , q ) from binary menu { ( x , p ) , ( y , q ) } , but ( y , q ) is chosen over ( x , p ) when ( z , · ) is added. A2 A2 ( z , r ) r ( y , q ) ( y , q ) q q ( z , t ) t ( x , p ) ( x , p ) p p z y x z y x A1 A1 Compromise Effect Attraction Effect well documented in experimental and marketing studies: consumer choice, risky choice, choice over policy issues Gerelt Tserenjigmid A Reference-Dependent Model

  5. Today ... Basic Setup and Model. Diminishing Sensitivity. Predictions. Application. Representation Theorem. Related Literature. Gerelt Tserenjigmid A Reference-Dependent Model

  6. Basic Setup and Model Gerelt Tserenjigmid A Reference-Dependent Model

  7. Basic Setup X = R 2 + the set of all alternatives with two attributes. α ⊆ 2 X \ { (0 , 0) } a collection of compact subsets (menus) of X . The primitive: A choice correspondence C : α ⇒ X where C ( A ) ⊆ A and C ( A ) � = ∅ for each A ∈ α . Gerelt Tserenjigmid A Reference-Dependent Model

  8. Models of Reference-Dependent Preferences Exogenous Reference Points: Tversky and Kahneman (1991), the utility of ( x , p ) for given reference point r =( r 1 , r 2 ) is � � � � � � V r x , p = f u ( x ) − u ( r 1 ) + g w ( p ) − w ( r 2 ) . (1) Gerelt Tserenjigmid A Reference-Dependent Model

  9. Models of Reference-Dependent Preferences Exogenous Reference Points: Tversky and Kahneman (1991), the utility of ( x , p ) for given reference point r =( r 1 , r 2 ) is � � � � � � V r x , p = f u ( x ) − u ( r 1 ) + g w ( p ) − w ( r 2 ) . (1) Menu-Dependent Reference Point: for each A ∈ α , ( x A , p A ) ≡ � � ( x , p ) ∈ A x , min ( x , p ) ∈ A p min . Our Model: C is a MinMin reference dependent choice if ∃ strictly increasing functions u , w , and f such that for any A ∈ α , � �� u ( x ) − u ( x A ) w ( p ) − w ( p A ) � � � C ( A ) = arg max f + f . (2) ( x , p ) ∈ A transitivity Gerelt Tserenjigmid A Reference-Dependent Model

  10. Why Minimums ? Our Model: For any A ∈ α , � �� u ( x ) − u ( x A ) w ( p ) − w ( p A ) � � � C ( A ) = arg max f + f . ( x , p ) ∈ A In both the Compromise and Attraction Effects, ( z , · ) is added to { ( x , p ) , ( y , q ) } . As restrictive as possible: f and ( x A , p A ), compared to standard Additive Utility Model, u ( x ) + w ( p ). Gerelt Tserenjigmid A Reference-Dependent Model

  11. Why Minimums ? Our Model: For any A ∈ α , � �� u ( x ) − u ( x A ) w ( p ) − w ( p A ) � � � C ( A ) = arg max f + f . ( x , p ) ∈ A In both the Compromise and Attraction Effects, ( z , · ) is added to { ( x , p ) , ( y , q ) } . As restrictive as possible: f and ( x A , p A ), compared to standard Additive Utility Model, u ( x ) + w ( p ). General Menu-Dependence ? no predictive power. Gerelt Tserenjigmid A Reference-Dependent Model

  12. Why Minimums ? Our Model: For any A ∈ α , � �� u ( x ) − u ( x A ) w ( p ) − w ( p A ) � � � C ( A ) = arg max f + f . ( x , p ) ∈ A In both the Compromise and Attraction Effects, ( z , · ) is added to { ( x , p ) , ( y , q ) } . As restrictive as possible: f and ( x A , p A ), compared to standard Additive Utility Model, u ( x ) + w ( p ). General Menu-Dependence ? no predictive power. Maximums ? cannot have the Attraction Effect. Average ? i) increasing in minimum; ii) more parameters. Gerelt Tserenjigmid A Reference-Dependent Model

  13. Diminishing Sensitivity – Tversky and Kahneman (1991) MRS x , p is increasing in the reference for the first dimension – strict concavity of f . I (1 , 1) A2 √ x − 1 + √ p − 1 = 2 . 7 7 5 3 1 1 3 5 7 A1

  14. Diminishing Sensitivity – Tversky and Kahneman (1991) MRS x , p is increasing in the reference for the first dimension – strict concavity of f . I (1 , 1) A2 √ x − 1 + √ p − 1 = 2 . 7 √ x − 3 + √ p − 1 = 2 7 I (3 , 1) 5 3 1 1 3 5 7 A1 Gerelt Tserenjigmid A Reference-Dependent Model

  15. Diminishing Sensitivity ⇒ Compromise and Attraction Effects Gerelt Tserenjigmid A Reference-Dependent Model

  16. A2 A2 r ( y , q ) ( y , q ) q q t ( x , p ) ( x , p ) p p ( y , p ) ( y , p ) I ( y , p ) I ( y , p ) z y x z y x A1 A1 Compromise Effect Attraction Effect detail sufficiency and necessity of diminishing sensitivity

  17. A2 A2 ( z , r ) r ( y , q ) ( y , q ) q q ( z , t ) t ( x , p ) ( x , p ) p p ( z , p ) ( y , p ) ( z , p ) ( y , p ) I ( y , p ) I ( y , p ) z y x z y x A1 A1 Compromise Effect Attraction Effect detail sufficiency and necessity of diminishing sensitivity

  18. I ( z , p ) I ( z , p ) A2 A2 ( z , r ) r ( y , q ) ( y , q ) q q ( z , t ) t ( x , p ) ( x , p ) p p ( z , p ) ( y , p ) ( z , p ) ( y , p ) I ( y , p ) I ( y , p ) z y x z y x A1 A1 Compromise Effect Attraction Effect detail sufficiency and necessity of diminishing sensitivity Gerelt Tserenjigmid A Reference-Dependent Model

  19. Bounds on Preference Reversals Gerelt Tserenjigmid A Reference-Dependent Model

  20. Two Decoy Effect and Symmetric Dominance I ( z , p ) A2 ( y , q ) q ( z , t ) t ( x , p ) p s ( k , s ) I ( y , p ) z y x k A1 Two Decoy Effect Teppan and Felfernig (2009)

  21. Two Decoy Effect and Symmetric Dominance I ( z , p ) A2 ( y , q ) q ( z , t ) t ( x , p ) p ( z , p ) s ( z , s ) ( k , s ) I ( y , p ) z y x k A1 Two Decoy Effect Teppan and Felfernig (2009)

  22. Two Decoy Effect and Symmetric Dominance I ( z , p ) A2 I ( z , s ) ( y , q ) q ( z , t ) t ( x , p ) p ( z , p ) s ( z , s ) ( k , s ) I ( y , p ) z y x k A1 Two Decoy Effect Teppan and Felfernig (2009)

  23. Two Decoy Effect and Symmetric Dominance I ( z , p ) I ( z , p ) A2 A2 I ( z , s ) I ( z , s ) ( y , q ) ( y , q ) q q ( z , t ) t ( x , p ) ( x , p ) p p ( z , p ) ( y , p ) s ( z , s ) ( k , s ) s ( z , s ) I ( y , p ) I ( y , p ) z y x z y x k A1 A1 Two Decoy Effect Symmetric Dominance Teppan and Felfernig (2009) Masatlioglu and Uler (2013) Gerelt Tserenjigmid A Reference-Dependent Model

  24. A numerical example A2 √ r ∗ = 47 x − x A + � p − p A V A ( x , p ) = r ∗ = 22 . 1 CE ( y , q ) q =20 AE ( x , p ) p =11 SD s ∗ = 5 . 61 y =9 x =20 z ∗ = 80 A1 9 Gerelt Tserenjigmid A Reference-Dependent Model

  25. Application to Intertemporal Consumption Gerelt Tserenjigmid A Reference-Dependent Model

  26. The Effect of Non Binding Borrowing Constraint Today y 2 y 1 + 1+ r = M y 1 y 2 Tomorrow graph

  27. The Effect of Non Binding Borrowing Constraint Today y 1 + ¯ b y 2 y 1 + 1+ r = M y 1 y 2 Tomorrow graph

  28. The Effect of Non Binding Borrowing Constraint Today y 1 + ¯ b y 2 y 1 + 1+ r = M y 1 y 2 Tomorrow graph

  29. The Effect of Non Binding Borrowing Constraint 1 = α ( y 1 + ¯ ⋆ c ∗ b ) < α M Today ⋆ Excess Sensitivity of Consumption to Current Income y 1 + ¯ b y 2 y 1 + 1+ r = M y 1 y 2 Tomorrow graph Gerelt Tserenjigmid A Reference-Dependent Model

  30. Representation Theorem Gerelt Tserenjigmid A Reference-Dependent Model

  31. Representation Theorem Notation Notation: For any a , b , c ∈ X , � � � � i) a � b if a ∈ C { a , b } and a ≻ b if a = C { a , b } , � � � � ii) a � c b if a ∈ C { a , b , c } and a ≻ c b if a ∈ C { a , b , c } and � � ∈ C { a , b , c } b / . Gerelt Tserenjigmid A Reference-Dependent Model

  32. Representation Theorem 3 Standard Axioms Axiom (Regularity) i) Monotonicity, ii) Continuity, and iii) Solvability. Solvability: For any ( y , q ) and p , ∃ x ∈ R + s.t ( x , p ) ≻ ( y , q ). Axiom (Transitivity) � and � c are transitive for any c . Gerelt Tserenjigmid A Reference-Dependent Model

  33. Representation Theorem 3 Standard Axioms R satisfies Cancellation if for any ( x 1 , p 1 ) , ( x 2 , p 2 ) , ( x 3 , p 3 ), if ( x 1 , p 1 ) R ( x 2 , p 3 ) and ( x 2 , p 2 ) R ( x 3 , p 1 ) , then ( x 1 , p 2 ) R ( x 3 , p 3 ) . Axiom (Cancellation) � and � c satisfy Cancellation for any c . Gerelt Tserenjigmid A Reference-Dependent Model

  34. Representation Theorem 2 New Axioms WARP: ∀ A ∈ α , if a � = C ( A ), then C ( A \{ a } )= C ( A ) \{ a } . Axiom (Independence of Non Extreme Alternatives) > ( x A , p A ), then C ( A \{ a } )= C ( A ) \{ a } . ∀ A ∈ α , if a � = C ( A ) and a > Gerelt Tserenjigmid A Reference-Dependent Model

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend