charge transport and recombination in
play

Charge transport and recombination in bulk-heterojunction solar - PowerPoint PPT Presentation

Charge transport and recombination in bulk-heterojunction solar cells Ronald sterbacka Department of Physics and Center for Functional Materials bo Akademi University http://www.funmat.fi Finnish-Japanese Workshop on Functional Materials,


  1. Charge transport and recombination in bulk-heterojunction solar cells Ronald Österbacka Department of Physics and Center for Functional Materials Åbo Akademi University http://www.funmat.fi Finnish-Japanese Workshop on Functional Materials, 25-26.05.2009

  2. FunMat Schematic Page 2 29.5.2009

  3. Center for Functional Materials Our vision We believe that new functional materials will enable the printed intelligence revolution Our mission To create a strong multidisciplinary research environment for the development of new materials and demonstrating new functionalities by printing Key objectives • Excellence and innovativeness in research • Highly inter- and multidisciplinary approach to research • Strong national and international networking • To become the leader in paper based printed intelligence research Page 3 29.5.2009

  4. Outline • Introduction to charge transport and recombination – Effect of Langevin recombination • Recombination studies with TOF – In pure polymers – In annealed bulk-heterojunction solar cells • Double Injection Transients (DoI) – Effect of trapping • Suggested model – Nanomorphology important – 2D delocalization of charge carriers • Effect of reduced recombination on magnetortransport • Summary

  5. Bulk-Heterojunction Solar Cells PEDOT:PSS ITO Aluminum Glass OMe O O ) n Light ( OMe PCE ~ 2.5% I Mixture of electron accepting PCBM and electron donating polymer G. Yu, et al. Science 270 , 1789 (1995), J.J.M. Halls, et al., Nature 376 , 498 (1995)

  6. Second generation BHSC j U FF sc oc PCE P light PCE ~ 5% FF= U oc j sc Xiaoniu Yang, et al., Nano Letters, 5 , 579-583 (2005)

  7. Why transport and recombination? n = carrier density Efficiency proportional to the current = carrier mobility j en E e = electron charge E =electric field • Organic materials have low mobilities • To have same efficiency we need higher carrier densities • Higher density leads to lower carrier lifetime -> Lower current! 1 n ( 0 ) and the second order recombination parameter are important • parameters for testing suitable materials. • Main goal – to understand transport and recombination in polymeric solar cells.

  8. Langevin Recombination Expected in low-mobility ( <1 cm 2 /Vs) materials Langevin recombination is determined by the probability for the charge carriers to meet in space, independent of the subsequent fate of the carriers dp dn e ( ) 2 n p np n ( F , T ) L f L L dt dt 0 Necessary condition: The carrier mean free path is much smaller than the Coulomb capture radius r c , i.e. a << r C. 2 e r 19 nm c 4 kT 0 15mA/cm 2 for d=300 To reach a photocurrent density of L / > 5 · 10 -3 cm 2 /Vs . nm and V oc =0.5 V: P. Langevin, Ann. Chim. Phys. 28 , 433 (1903).

  9. Consequences of Langevin recombination • Langevin recombination leads to low photogeneration efficiency of Onsager type – Field-dependent generation! – Lower the Fill-Factor Q ext [Arb. Units] r r c kT Untreated Treated -1 0 1 2 3 4 U 0 [V] A. Pivrikas et al, unpublished

  10. Consequences of Langevin recombination • Langevin recombination leads to low photogeneration efficiency of Onsager type – Field-dependent generation! – Lower the Fill-Factor • Efficiency will be limited – Only ~CU can be extracted from the device Bimolecular 1 t tr t 0 0 t tr t tr t t lifetime Photo-SCLC: ne ne n Langevin!

  11. Recombination measured using TOF t [ms] 0.0 0.2 0.4 0.6 1.5 0.3 L = 300 J t e L = 100 J t cusp L = 30 J 0.2 L = 10 J t e j [mA] L = 3 J 1.0 L = 1 J j/j SCLC L = 0.3 J 0.1 L = 0.1 J L = 0.03 J -3 J L = 10 0.0 P3HT/PCBM Q = CU 0.5 0 20 Q <<CU 0 RRa-PHT 15 110 J 0.0 2 ] j [ A/cm 71 J 0 1 2 3 4 40 J 10 t/t tr 13 J 4.7 J 5 1.6 J 0.3 J 0.07 J 1. Small Charge Current (SCC) mode. 0 0 1 2 3 4 2. Space Charge Perturbed Current (SCPC). t [ms] 3. Space Charge Limited Current (SCLC). A. Pivrikas et al. PRB 71 , 125205, (2005) A. Pivrikas, et. al., PRL 94 , 176806 (2005).

  12. Reduced Recombination in RRPHT/PCBM Solar cells / L =0,0001 / L =0,01 10 / L =1 Q e /CU 0 1 Q ext 30CU 0 a) 0.1 / L =0,0001 150 / L =0,01 / L =1 100 t 1/2 /t tr b) 50 0 0.1 1 10 100 1000 L =10 -4 / Q 0 /CU 0 A. Pivrikas, et. al., PRL. 94 , 176806 (2005).

  13. Double Injection (DoI) Currents t/t a • Apply a voltage pulse 0 2 4 6 8 • Record the transient (a) 6 j (t) current t 1/2 j/j ; dj / dt j=j S - j m 4 • First the RC-current is observed 2 • Then the build-up of a d j /d t t m 0 carrier density is observed (b) 120 10 V • The saturation curent is 2 ] j [ m A/cm 80 t m 7V limited by recombination 5V • At switch-off, a reservoir 40 3V extraction is observed 0 0.0 0.2 0.4 t [ms] R.H. Dean. J. Appl. Phys. 40 , 585 (1969) Mark & Lampert, Current Injection in Solids , Academic Press NY (1970)

  14. Simulated current transients Q s / L =0.001 -3 L =10 / 10 Q 10 0.01 Q ex /CU j/j SCLC 0.1 d Q /d t 1 1 1 t slow t cusp 0.1 1 10 100 0.1 1 10 100 t p /t tr t/t tr As a function of pulse width As a function of G. Juska et al., JAP 101, 114305 (2007)

  15. Effect of trapping n / p =100 10 without trapping j / j SCLC 1 slow-carrier trapping faster carrier trapping 0.1 0.1 1 10 100 1000 t / t tr

  16. Trapping in real solar cells a-Si:H RR-P3HT/PCBM a-Si:H thickness 6 m 2 ) current density ( A/cm -3 10 delay between pulses 0.1 s single shot -4 10 transit time -7 -6 -5 -4 -3 -2 10 10 10 10 10 10 time (s) Note the absence of trapping in annealed RRPHT/PCBM BHSC! Juska et al., in press

  17. Why is there reduced recombination? After annealing Before annealing Xiaoniu Yang, et al., Nano Letters, 5 , 579-583 (2005)

  18. A possible model for reduced recombination in RR-PHT/PCBM • Increased carrier generation / reduced recombination due to an effective energy barrier for geminate pair recombination at the interface ( ~0.5 eV Osikowicz et al.) • To reach the chain nearest the interface the hole on the polymer has to overcome the same barrier • Probability for carriers to meet in space is reduced! • Requires lamellar structures at the interface V. Arkhipov et al., APL 82 , 4605 (2003); Osikowicz et al., Advanced Materials 19 , 4213 (2007)

  19. Lamellar structures important Head-to-tail ~ 80% Head-to-tail = 100% Sirringhaus et al., Nature 401 , 685 (1999); Österbacka et al., Science 287 , 839 (2000)

  20. Langevin recombination in MDMO- PPV/PCBM systems 4 Increasing Intensity 10 3 2 ] j [mA/cm 1 e /CU 0 1 2 Q 0.1 2 L 1 0.01 -8 -6 -4 -2 0 10 10 10 10 10 I/I 0 0 0.0 -5 -5 4.0x10 8.0x10 t [s] Pivrikas et al., Nonlinear Optics, Quantum Optics: Concepts in Modern Optics, 37 , 169-177 (2007)

  21. Role of e-h recombination on OMAR 1 10 0 10 -1 10 % MR -2 10 P3HT Diode L ~1 MDMO-PPV/PCBM L ~0.5 -3 10 -1 Un-treated L ~10 -3 Treated L ~10 -4 10 -300 -200 -100 0 100 200 300 B (mT) S. Majumdar et al., Physical Review B 79 , 201202R (2009).

  22. Correlation with magnetic behavior -8 2x10 P3HT Magnetization (Am2) -8 1x10 1 10 0 L ~ 1 -8 -1x10 L ~ 0.5 0 10 | % MR | -1 -8 L ~ 10 -2x10 -3 L ~ 10 -200 -100 0 100 200 -1 10 B (mT) -7 2x10 -2 5 K 10 100 K -7 1x10 -300 -200 -100 0 100 200 300 Magnetization B (mT) 0 P3HT/PCBM -7 -1x10 -7 -2x10 -200 -100 0 100 200 B (mT) S. Majumdar et al., submitted. V.I. Krinichnyi, Solar cells and Solar energy Materials 92 , 942 (2008).

  23. Summary • Bimolecular recombination is important for characterization of solar cell materials • Langevin recombination: untreated treated 0.5 – Probability for charge carriers to meet in space 0.4 0.3 EQE – Field dependent generation of Onsager type 0.2 – Lower extraction efficiency 0.1 400 500 600 700 800 900 • Treated RR-PHT/PCBM blends shows greatly reduced wavelength [nm] recombination compared to Langevin L ~10 -3 ~ • Untreated RR-PHT/PCBM blends show ~ L ~ 0.1 • MDMO-PPV/PCBM blends show ~ L ~ 0.5 • Nanomorphology important ->delocalization in lamellas important! • DoI is an extremely useful measurement technique for materials with reduced recombination • Take-home message: The probability to form electron – hole pairs is crucial for the magnetotransport response.

  24. The people! • S. Majumdar, H. Majumdar, T. Mäkelä, L. Jian, R. Mohan, ÅA • H. Aarnio, G. Sliauzys, J.K. Baral, N. Kaihovirta, D. Tobjörk, F. Jansson, N. Björklund, M. Nyman, S. Sanden, F. Petterson, ÅA • H. Stubb (emeritus), K.-M. Källman (lab engineer), ÅA • Left the group: A. Pivrikas (Linz), T. Bäcklund (UPM), H. Sandberg (VTT), M. Westerling (Perkin-Elmer) • G. Ju š ka, K. Arlauskas, K. Genevicius/Vilnius Univ • R. Laiho/University of Turku • N.S. Sariciftci, LIOS • G. Dennler and M. Scharber, Konarka Austria • D. Vanderzande, Universiteit Hasselt, Belgium • Financial Support by the Academy of Finland, Technology Development Center TEKES, and Magnus Ehrnrooth foundation

  25. Organic Electronics group 2008 Page 25 29.5.2009

  26. Thank you!

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend