ch 4 stress
play

CH.4. STRESS Continuum Mechanics Course (MMC) - ETSECCPB - UPC - PowerPoint PPT Presentation

CH.4. STRESS Continuum Mechanics Course (MMC) - ETSECCPB - UPC Overview Forces Acting on a Continuum Body Cauchys Postulates Stress Tensor Stress Tensor Components Scientific Notation Engineering Notation Sign


  1. CH.4. STRESS Continuum Mechanics Course (MMC) - ETSECCPB - UPC

  2. Overview  Forces Acting on a Continuum Body  Cauchy’s Postulates  Stress Tensor  Stress Tensor Components  Scientific Notation  Engineering Notation  Sign Criterion  Properties of the Cauchy Stress Tensor  Cauchy’s Equation of Motion  Principal Stresses and Principal Stress Directions  Mean Stress and Mean Pressure  Spherical and Deviatoric Parts of a Stress Tensor  Stress Invariants 2 MMC - ETSECCPB - UPC 03/11/2014

  3. Overview (cont’d)  Stress Tensor in Different Coordinate Systems  Cylindrical Coordinate System  Spherical Coordinate System  Mohr’s Circle  Mohr’s Circle for a 3D State of Stress  Determination of the Mohr’s Circle  Mohr’s Circle for a 2D State of Stress  2D State of Stress  Stresses in Oblique Plane  Direct Problem  Inverse Problem  Mohr´s Circle for a 2D State of Stress 3 MMC - ETSECCPB - UPC 03/11/2014

  4. Overview (cont’d)  Mohr’s Circle a 2D State of Stress (cont’d)  Construction of Mohr’s Circle  Mohr´s Circle Properties  The Pole or the Origin of Planes  Sign Convention in Soil Mechanics  Particular Cases of Mohr’s Circle 4 MMC - ETSECCPB - UPC 03/11/2014

  5. 4.1. Forces on a Continuum Body Ch.4. Stress 5 MMC - ETSECCPB - UPC 03/11/2014

  6. Forces Acting on a Continuum Body Forces acting on a continuum body:  Body forces.  Act on the elements of volume or mass inside the body.  “Action-at-a-distance” force.  E.g.: gravity, electrostatic forces, magnetic forces      f b x , t dV body force per unit V V mass (specific body forces)  Surface forces.  Contact forces acting on the body at its boundary surface.  E.g.: contact forces between bodies, applied point or distributed loads on the surface of a body     surface force t f x , t dS (traction vector) S  V per unit surface 6 MMC - ETSECCPB - UPC 03/11/2014

  7. 4.2. Cauchy’s Postulates Ch.4. Stress 7 MMC - ETSECCPB - UPC 03/11/2014

  8. Cauchy’s Postulates Cauchy’s 1 st postulate. 1. REMARK The traction vector t remains unchanged The traction vector (generalized to for all surfaces passing through the point internal points) is not influenced by P n and having the same normal vector at . the curvature of the internal surfaces. P    t t , n P 2. Cauchy’s fundamental lemma (Cauchy reciprocal theorem) The traction vectors acting at point P on opposite sides of the same surface are equal in magnitude and opposite in direction.     REMARK    t , n t , n P P Cauchy’s fundamental lemma is equivalent to Newton's 3 rd law (action and reaction). 8 MMC - ETSECCPB - UPC 03/11/2014

  9. 4.3. Stress Tensor Ch.4. Stress 9 MMC - ETSECCPB - UPC 03/11/2014

  10. Stress Tensor  The areas of the faces of the tetrahedron are:  S n S 1 1   T   n n ,n ,n with S n S 1 2 3 2 2  S n S 3 3  The “mean” stress vectors acting on these faces are        1 * 2 * 3 * *  *   *    *    *  ˆ ˆ ˆ t t x ( ), t t x ( , e ), t t x ( , e ), t t x ( , e )  1 2 3 S S S S  1 2 3 *   *   x 1,2,3 ; x mean value theorem  S i S  S i S i  The surface normal vectors of the planes perpendicular to the axes are       ˆ ˆ ˆ n e ; n e ; n e 1 1 2 2 3 3 REMARK  Following Cauchy’s fundamental lemma:     not       The asterisk indicates an     i  ˆ ˆ t x , e t x e , t x i 1,2,3 i i mean value over the area. 10 MMC - ETSECCPB - UPC 03/11/2014

  11. Mean Value Theorem    R  Let be a continuous function on the closed interval : a,b f      a,b , and differentiable on the open interval , where . a,b a b   Then, there exists some * in such that: a,b x 1         * d f x f x     R  I.e.: gets its : a,b f   * “mean value” at the interior f x   a,b of 11 MMC - ETSECCPB - UPC 03/11/2014

  12. Stress Tensor  From equilibrium of forces, i.e. Newton’s 2 nd law of motion:               R f a b t a a m dV dS dV dV  i i i  i i V V V V dm resultant body forces                 1   2   3   b t t t t a dV dS dS dS dS dV V S S S S V 1 2 3 resultant surface forces  Considering the mean value theorem,          1  2  3   * * * * * * ( b ) V t S t S t S t S ( a ) V 1 2 3 1    Introducing and ,    1,2,3 V Sh S n S i 3 i i 1 1          1  2  3   * * * * * * ( b ) t S t S t S t S ( a ) h S n n n hS 1 2 3 3 3 12 MMC - ETSECCPB - UPC 03/11/2014

  13. Stress Tensor (h  0)  If the tetrahedron shrinks to point O ,              i  i  * * * ˆ x x lim t x t e i 1,2,3 O,   S S i O  i h 0 i       *  * *  x x lim t x n , t , n O   S S O  h 0  1   1      * * lim ( b ) lim ( a ) 0     h h 3 3       h 0 h 0  The limit of the expression for the equilibrium of forces becomes,        t 2 3  t 1  t 1 1              1  2  3   * * * * * * ( b ) t t t t ( a )   t , n t i 0 h n n n h O n 1 2 3 3 3 i    t , n O 13 MMC - ETSECCPB - UPC 03/11/2014

  14. Stress Tensor  Considering the traction vector’s Cartesian components :             ( ) ˆ ˆ   t i ( ) e e t , n t i i  P t P P n    j j ij j     , 1,2,3 i  i j       i      ( ) P t P t , n t  i P n n ij j  j j i i ij    ij       n   Cauchy’s Stress Tensor t , n  P P     ˆ ˆ e e ij i j P  In the matrix form:       1 1 1 t t t 2 3 1         11  21  31     t 1 n 1 T t n n        j i ij ji i           12  22  32 {1,2,3}  t 2 n 2 j                T  13  23  33  t n t 3 n 3                    1 2 3 t t t 14 MMC - ETSECCPB - UPC 03/11/2014

  15. Stress Tensor REMARK 1       The expression is consistent with Cauchy’s postulates: t , n n P P     t , n n P        t , n t , n P P   P     t , n n REMARK 2 The Cauchy stress tensor is constructed from the traction vectors on three coordinate planes passing through point P .      11 12 13          21 22 23        31 32 33 Yet, this tensor contains information on the traction vectors acting on any plane (identified by its normal n ) which passes through point P . 15 MMC - ETSECCPB - UPC 03/11/2014

  16. 4.4.Stress Tensor Components Ch.4. Stress 16 MMC - ETSECCPB - UPC 03/11/2014

  17. Scientific Notation  Cauchy’s stress tensor in scientific notation      11 12 13          21 22 23        31 32 33  ij  Each component is characterized by its sub-indices:  Index i designates the coordinate plane on which the component acts.  Index j identifies the coordinate direction in which the component acts. 17 MMC - ETSECCPB - UPC 03/11/2014

  18. Engineering Notation  Cauchy’s stress tensor in engineering notation      x xy xz          yx y yz        zx zy z  Where:  a is the normal stress acting on plane a .   ab is the tangential (shear) stress acting on the plane perpendicular to  the a -axis in the direction of the b -axis. 18 MMC - ETSECCPB - UPC 03/11/2014

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend