central poland
play

CENTRAL POLAND) Z.M. Migaszewski [zmig@pu.kielce.pl] A. Gauszka, S. - PowerPoint PPT Presentation

CHEMICAL AND ISOTOPIC VARIATIONS IN THE WINIWKA MAA MINE PIT WATER, HOLY CROSS MOUNTAINS (SOUTH- CENTRAL POLAND) Z.M. Migaszewski [zmig@pu.kielce.pl] A. Gauszka, S. Dogowska, A. Michalik (Pedagogical University, Kielce) S. Haas,


  1. CHEMICAL AND ISOTOPIC VARIATIONS IN THE WIŚNIÓWKA MAŁA MINE PIT WATER, HOLY CROSS MOUNTAINS (SOUTH- CENTRAL POLAND) Z.M. Migaszewski [zmig@pu.kielce.pl] A. Gałuszka, S. Dołęgowska, A. Michalik (Pedagogical University, Kielce) S. Hałas, J. Dąbek (Maria Curie- Skłodowska University, Lublin) P. Pasławski, E. Starnawska (Polish Geological Institute, Warsaw)

  2. Acid rock drainage/acid mine drainage The oxidation of pyrite and iron-bearing sulfide minerals belongs to the most hazardous geogenic (geologic) and anthropogenic sources that can account for pollution of the environment. In 1989 about 19,300 km of streams and rivers,and 72,000 ha of lakes and reservoirs were seriously damaged by mine effluents. The cessation of sulfide ore and brown coal mining operations leaves abandoned quarries and underground workings usually filled in with water. Another source is mineral tailings. Most of the post-mining lakes and ponds are highlighted by a low pH (1 – 4) and raised levels of trace metals (in mg  L -1 or g  L -1 ).

  3. The pyrite can undergo microbial oxidation by two natural oxidants, i.e. (1) oxygen and even more effective (2) ferric (Fe 3+ ) ion: FeS 2 + 3,5O 2 + H 2 O  Fe 2+ + 2SO 4 2- + 2H + (1) FeS 2 + 14Fe 3+ + 8H 2 O  15Fe 2+ + 2SO 4 2- + 16H + (2) 2Fe 2+ + 1/2O 2 + 2H +  2Fe 3+ + H 2 O (3) Fe 3+ + 3H 2 O  Fe(OH) 3  + 3H + (4) Chemolithotrophic acidophilic oxidizing bacteria, e.g. Acidithiobacillus ferrooxidans, A. thiooxidans, Leptospirillum ferrooxidans, catalyze all the stages of pyrite oxidation increasing reaction rates by several orders of magnitude.

  4. Mining area of the Kielce Quartzite Mines ”Wiśniówka”

  5. Bathymetric map of the Wiśniówka Mała pit lake

  6. Wiśniówka Mała – eastern pond

  7. Wiśniówka Mała – western pond

  8. METHODS Field measurements of water:  pH, EC, T (pH-meter CP-103 and EC-meter CC- 101 Elmetron, Poland);  concentrations of Fe 2+ , Fe total , HCO 3 - , SO 4 2- (spectrophotometer LF-205 Slandi, Poland). Chemical analyses of water:  cations – 30 elements (including Hg)  ICP-OES (multichannel spectrometer Jobin- Yvon – model PANORAMA with horizontal plasma);  ICP-MS (spectrometer ELAN DRC II, Perkin Elmer);  CV-AAS (Altec amalgam analyzer AMA 254).

  9.  Anions – Br - , Cl - , F - , HPO 4 2- ), NO 2 - , NO 3 - (Waters + (Varian – Cary-1e); HPLC Ion Chrom); NH 4 Chemical analyses of sediment:  31 elements: XRF; spectrometer Philips PW 2400), ICP-MS, CV-AAS). Mineralogic study of sediment:  polarizing microscope (Axilab Zeiss);  scanning electron microscope (SEM/EDS LEO 1430/ISIS Detector (Oxford Instruments Ltd.).  X-ray diffraction (diffractometer Philips X'Pert PW 3020) Isotopic analyses (mass spectrometer MI-1305):  S and O isotopes (in soluble sulfates);  O isotopes (in H 2 O).

  10. pH = 3.73; EC = 390  S  cm -1 pH 4.36; EC = 293  S  cm -1 Wiśniówka Mała lake

  11. Physico-chemical parameters, and S and O stable isotope ratios in the water of the Wiśniówka Mała pit lake in 2005 Western pond Eastern pond Parameter Depth of sampling (in m) 0.1 5.0 10.0 13.5 0.1 5.0 10.0 12.7 3.75 3.78 3.37 3.38 4.40 4.27 4.26 4.27 pH EC  S  cm -1 231 235 231 231 450 450 672 656 T  C 19.0 18.5 18.5 18.0 15.0 14.5 14.5 14.5 Fe 2+ mg  L -1 0.2 0.1 0.7 0.4 <0.1 <0.1 <0.1 <0.1 Fe 3+ mg  L -1 0.1 0.2 1.8 1.9 <0.2 <0.2 <0.2 <0.2 2- mg  L -1 109 108 172 174 81 85 85 84 SO 4  34 S-SO 4 2- ‰ -4.7 -4.8 -6.5 -6.3 -2.2 -1.7 -2.1 -2.1  18 O-SO 4 2- ‰ -0.9 -1.69 -3.0 -2.7 -2.2 -2.4 -1.8 -1.6

  12. Physico-chemical parameters, and S and O stable isotope ratios in the water of the Wiśniówka Mała pit lake in 2006 Western pond Eastern pond Parameter Depth of sampling (in m) 0.1 5.0 10.0 15.6 0.1 5.0 10.0 14.0 3.93 4.33 3.94 3.72 4.59 4.44 4.69 4.47 pH EC  S  cm -1 322 322 328 331 417 445 323 563 T  C 24.0 21.7 22.0 24.6 25.3 24.3 22.5 26.5 Fe 2+ mg  L -1 0.3 0.5 1.0 2.7 <0.1 <0.1 <0.1 <0.1 Fe 3+ mg  L -1 0.0 0.0 0.0 0.3 <0.2 <0.2 <0.2 <0.2 2- mg  L -1 147 117 160 192 95 88 100 96 SO 4  34 S-SO 4 2- ‰ -4.9 -4.6 -5.2 -5.4 -1.4 -1.1 -0.9 -1.4  18 O-SO 4 2- ‰ -0.6 -0.5 -0.8 -2.3 -1.6 -2.3 -2.9 -1.4

  13. Selected trace metals in the water of the Wiśniówka Mała pit lake in 2006 Western pond Eastern pond Parameter Depth of sampling (in m) 0.1 5.0 10.0 15.6 0.1 5.0 10.0 14.0 Ba mg  L -1 38 32 34 31 64 62 71 73 Cd mg  L -1 0.41 0.37 0.46 0.46 0.33 0.30 0.58 0.30 Co mg  L -1 40 41 45 54 32 30 32 31 Cu mg  L -1 78 83 94 126 49 49 52 50 Ni mg  L -1 46 47 51 60 36 34 36 34 Pb mg  L -1 1.53 3.20 1.31 1.20 0.64 1.48 1.33 0.67 U mg  L -1 1.31 1.54 1.76 2.65 0.50 0.56 0.57 0.58 Zn mg  L -1 76 75 80 88 48 47 54 49 As – <2  g  L -1 , Hg – <0.3  g  L -1

  14. Selected trace metals in the sediment of the Wiśniówka Mała pit lake in 2006 Parameter Western pond Eastern pond CaO % 0.11 0.10 Fe 2 O 3 % 2.08 2.26 As mg  kg -1 43 40 Ba mg  kg -1 843 958 Cu mg  kg -1 14 16 Hg mg  kg -1 2.38 1.96 Ni mg  kg -1 7 10 Pb mg  kg -1 16 18 U mg  kg -1 3.30 4.65 Zn mg  kg -1 27 26 Cd – <3 mg  kg -1 , Co – <5 mg  kg -1

  15. Saturation indices for selected minerals calculated with PHREEQC program for Windows Western pond Eastern pond Minerals Depth of sampling (in m) 0.1 5.0 10.0 15.6 0.1 5.0 10.0 14.0 -2.60 -1.53 -2.60 -2.88 -0.98 -1.56 -0.88 -1.28 Al(OH) 3 (a) 8.70 7.26 8.86 7.83 Ca-smectite 5.00 7.69 5.20 4.49 Fe(OH) 3 (a) -6.07 -4.83 -5.62 -5.82 -4.53 -5.04 -4.39 -5.01 -0.22 0.94 0.16 0.05 1.38 0.83 1.41 0.93 Goethite 1.53 3.88 2.32 2.11 4.76 3.66 4.83 3.88 Hematite 2.06 5.01 2.25 1.38 6.22 4.65 6.46 5.26 Illite 1.96 1.98 2.02 2.02 1.89 1.88 1.86 1.85 Quartz

  16. SEM images of the sediment Western pond Eastern pond

  17. Hydrous ferric oxides and hydroxides Clay minerals

  18. 5 µ m Hydrous ferric oxides and hydroxides 5 µ m

  19. Gorceixite BaAl 3 H[(OH) 6 (PO 4 ) 2 ] 5 µ m Hydrous ferric oxides and hydroxides 100 µ m

  20.  18 O sulfate = X oxygen (  18 O oxygen +  oxygen ) + X water (  18 O water +  water )

  21. Dissolved O 2 Precipitation  18 O = 23.5‰ Precipitation Soils + wastes Soils + wastes!!  18 O-SO 4 2- = 7 to 17‰ (12.5% H 2 O) Oxygen path (87.5% O 2 )  34 S-SO 4 2- = 4.5‰  18 O-SO 4 2- = - 1.4‰  34 S-SO 4 2- = - 5.6‰ Iron path (Fe 3+ )  34 S-FeS 2 = - 11.6‰?  18 O-H 2 O = - 8.5‰

  22. Unique chemistry of the Wiśniówka Mała pit lake water 2- Fe tot. Fe 2+ SO 4 Locations of mine pits pH mg  L -1 Wiśniówka Mała lake – western pond 3.73 156 1.0 0.6 Wiśniówka Mała lake – eastern pond 4.36 90 <0.2 <0.1 Podwiśniówka mine pond 2.90 131 5.6 3.0 – – 2.54 1160 – – Lusatia (eastern Germany) 2.87 1559 – – 3.25 2006 Mynydd Parys (G.B.) – copper mine 2.5 3100 650 650 Sverdrupbyen (Norway) – coal dumps – 2.7 1077 179 Wheal Jane (G.B.) – tin mine 3.6 350 130 130

  23. Conclusions 1. The principal source of soluble sulfates in the Wiśniówka Mała pit lake is the oxidation of pyrite and iron oxidation/hydrolysis reactions with some influxes of sulfates from: (i) soils, weathered wallrocks and tailings piles and subordinate (ii) atmospheric deposition. 2. The pit lake reveals different chemistry and isotopic composition within two separated ponds. The western pond is notable for the lower pH and higher concentrations of most elements. 3. Compared to other areas impacted by acid mine drainage, the water examined shows distinctly low concentration of sulfates, iron and other trace metals.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend