central limit theorem for general universal products
play

Central Limit Theorem for General Universal Products Philipp Var so - PowerPoint PPT Presentation

Central Limit Theorem for General Universal Products Philipp Var so Institute of Mathematics and Computer Science, University Greifswald, Germany S eminaire Analyse Fonctionnelle, Laboratoire de Math ematiques de Besan con,


  1. Central Limit Theorem for General Universal Products Philipp Varˇ so Institute of Mathematics and Computer Science, University Greifswald, Germany S´ eminaire Analyse Fonctionnelle, Laboratoire de Math´ ematiques de Besan¸ con, 12.12.2017

  2. Motivation • investigate noncommutative notions of independence using an algebraic approach • for d, m ∈ ◆ define category algP d , m of ( d, m )-algebraic quantum probability spaces [MS17] 1 • model independence by so called universal products • Muraki has shown ∃ only 5 normal universal products in algP 1 , 1 , i.e. objects are algebras A equipped with ϕ ∈ A ∗ • What about a d -tuple of linear functionals? What about an m -fold free product of A ? • reasons why we should study such structures are e.g. bifreeness ( d = 1 , m = 2) [Voi14], c-freeness ( d = 2 , m = 1) [BS91] and bimonotonic independence of type II ( d = 1 , m = 2) [GHS17] [Ger17] 1 S. Manzel and M. Sch¨ urmann. “Non-commutative stochastic independence and cumulants”. In: Infin. Dimens. Anal. Quantum Probab. Relat. Top. 20.2 (2017), pp. 1750010, 38. 1 / 27

  3. Contents 1 Essential definitions 2 Definition of Lachs Functor 3 Mini digression: comonoids and cotensor functors 4 Lachs Functor is cotensor functor 5 Convolution products and exponential series 6 Central Limit Theorem

  4. Notational conventions • for m ∈ ◆ set [ m ] := { 1 , . . . , m } • set of all linear functionals of vector space V denoted by V ∗ • S( V ) for symmetric tensor algebra of ❈ -vector space V • if A is unital algebra and f : V A is linear map with f ( x ) f ( y ) = f ( y ) f ( x ) f.a. x, y ∈ V , then S ( f ): S( V ) A is unique unital algebra homomorphism s.t. S ( f ) ◦ ι V = f . • let V, W be ❈ -vector spaces and g : V W linear map, we put S( g ) := S ( ι W ◦ g ): S( V ) S( W ) • all algebras of consideration are in particular ❈ -vector spaces, associative but not necessarilly unital • free product of algebras? 2 / 27

  5. Digression: Free product of algebras • for arbitrary index set I define ❆ I := { ε = ( ε i ) i ∈ [ m ] ∈ I m | m ∈ ◆ , ε k � = ε k +1 , k = 1 , . . . , m − 1 } • given family of vector spaces ( V i ) i ∈ I , for ε ∈ ❆ I set V ε := V ε 1 ⊗ · · · ⊗ V ε m • given family of algebras ( A i ) i ∈ I we set ⊔ � A i := A ε i ∈ I ε ∈ ❆ I with multiplication given by � a 1 ⊗ · · · ⊗ a m ⊗ b 1 ⊗ · · · ⊗ b n if ε m � = δ 1 ( a 1 ⊗ · · · ⊗ a m ) ( b 1 ⊗ · · · ⊗ b n ) := a 1 ⊗ · · · ⊗ a m b 1 ⊗ · · · ⊗ b n if ε m = δ 1 � �� � � �� � ∈ A ε ∈ A δ • ⊔ is coproduct in category alg , i.e. for ( A i ) i ∈ I ⊆ Obj ( alg ), A ∈ Obj ( alg ) and family of morphisms ( f i : A i A ) i ∈ I exists unique morphism ⊔ i ∈ I f i : ⊔ i ∈ I A i A such that ⊔ i ∈ I f i ◦ ι i = f i . Moreover f i X i Y i ι ′ ι i i ⊔ i ∈ I X i ⊔ i ∈ I Y i ⊔ i ∈ I f i 3 / 27

  6. Central Limit Theorem for General Universal Products 1 Essential definitions 2 Definition of Lachs Functor 3 Mini digression: comonoids and cotensor functors 4 Lachs Functor is cotensor functor 5 Convolution products and exponential series 6 Central Limit Theorem 4 / 27

  7. Definition 1 (Category alg m ) • objects of category alg m are ordered pairs ( A , ( A ( i ) ) i ∈ [ d ] ) with following properties i.) A is an associative algebra ii.) ∀ i ∈ [ m ]: A ( i ) is a subalgebra of A iii.) finite family ( A ( i ) ) i ∈ [ m ] freely generates A , i.e. the algebra homomorphism from ⊔ i ∈ [ m ] A ( i ) A defined by A ε ∋ a 1 ⊗ · · · ⊗ a n Ñ a 1 · · · · · a n ∈ A is bijection � � ( B , ( B ( i ) ) i ∈ [ m ] ) , ( A , ( A ( i ) ) i ∈ [ m ] ) • morphisms j ∈ Morph alg m fullfill the following iv.) j ∈ Morph alg ( B , A ) v.) ∀ k ∈ [ m ]: j ( B ( k ) ) ⊆ A ( k ) 5 / 27

  8. Definition 2 (Category algP d , m [MS17, Sec. 2]) • objects of algP d , m are triples ( A , ( A ( i ) ) i ∈ [ m ] , ( ϕ ( i ) ) i ∈ [ d ] ), wherein ( A , ( A ( i ) ) i ∈ [ m ] ) ∈ Obj ( alg m ) and ( ϕ ( i ) ) i ∈ [ d ] ∈ ( A ∗ ) d • for morphisms � � ( B , ( B ( i ) ) i ∈ [ m ] , ( ψ ( i ) ) i ∈ [ d ] ) , ( A , ( A ( i ) ) i ∈ [ m ] , ( ϕ ( i ) ) i ∈ [ d ] ) j ∈ Morph algP d , m of algP d , m we demand i.) j ∈ Morph alg m ( B , A ) ii.) ∀ i ∈ [ d ]: ϕ ( i ) ◦ j = ψ ( i ) . Remark 1 there exist well known isomorphisms � d ∼ � Hom ❈ ( V d , ❈ ) ∼ = Hom ❈ ( V, ❈ d ) = Hom ❈ ( V, ❈ ) 6 / 27

  9. Definition 3 (u.a.u.-product in algP d , m ) • universal product in the category algP d , m is bifunctor ⊙ of the form � � �  ( A 1 , ( A ( i ) , ( A 2 , ( A ( i ) Obj ( algP d , m × algP d , m ) ∋ ) i ∈ [ m ] , ϕ 1 ) i ∈ [ m ] , ϕ 2  1 2     � �  A 1 ⊔ A 2 , ( A ( i ) ⊔ A ( i )  ) i ∈ [ m ] , ϕ 1 ⊙ ϕ 2 ∈ Obj ( algP d , m )  Ñ 1 2 ⊙ : �� �� � �   Morph algPd , m × algPd , m ( B 1 , ψ 1 ) , ( B 2 , ψ 2 ) ) , ( A 1 , ϕ 1 ) , ( A 2 , ϕ 2 ) ∋ ( j 1 , j 2 )      � �  Ñ j 1 ⊔ j 2 ∈ Morph algPd , m ( B 1 ⊔ B 2 , ψ 1 ⊙ ψ 2 ) , ( A 1 ⊔ A 2 , ϕ 1 ⊙ ϕ 2 ) • universal product in algP d , m is called unital if ∀ i ∈ [ d ] , ∀ j ∈ [2] : ( ϕ 1 ⊙ ϕ 2 ) ( i ) ◦ ι j = ϕ ( i ) j • universal product in algP d , m is called associative if � � � � ( ϕ 1 ⊙ ϕ 2 ) ⊙ ϕ 3 = ϕ 1 ⊙ ( ϕ 2 ⊙ ϕ 3 ) . product having all these 3 properties is abbreviated by u.a.u.-product 7 / 27

  10. • tensor category is category C with bifunctor ⊠ : C × C C , that is associative up to natural isomorphism, and an object E that is both a left and right identity for ⊠ . coherence conditions ensure that all relevant diagrams commute Remark 2 i.) if ⊙ is an u.a.u.-product in algP d , m ⇒ universality condition, i.e. for all B i ∈ Obj ( alg m ) and ( A i , ϕ i ) ∈ Obj ( algP d , m ) and j i ∈ Morph alg m ( B i , A i ) , i ∈ [2] holds � � ( ℓ ) = ( ϕ 1 ⊙ ϕ 2 ) ( ℓ ) ◦ ( j 1 ⊔ j 2 ) ( ϕ ( i ) ◦ j 1 ) i ∈ [ d ] ⊙ ( ϕ ( i ) ∀ ℓ ∈ [ d ]: ◦ j 2 ) i ∈ [ d ] 1 2 ii.) if ⊙ is an u.a.u.-product in algP d , m , then ( algP d , m , ⊙ , ( { 0 } , 0 Ñ 0)) is tensor category Definition 4 if ⊙ in algP d , m and ( A i , ( A ( k ) ) k ∈ [ d ] ) ∈ Obj ( alg m ) , i ∈ [2] are i given, then define for ϕ i ∈ (( A i ) ∗ ) d �� �� � � A 1 , ( A ( k ) A 2 , ( A ( k ) ϕ 1 ⊙ ϕ 2 := ) k ∈ [ d ] , ϕ 1 ⊙ ) k ∈ [ d ] , ϕ 2 1 2 where we identify ϕ 1 ⊙ ϕ 2 ∈ (( A 1 ⊔ A 2 ) ∗ ) d 8 / 27

  11. Definition 5 (Catgegory alg ◆ 0 and calg ◆ 0 ✶ ) m • objects of alg ◆ 0 are triples ( A , ( A ( i ) ) i ∈ [ m ] , (( A ( i ) ) � α � ) ( i,α ) ∈ [ m ] × ◆ 0 ) i.) m where ( A , ( A ( i ) ) i ∈ [ m ] ) ∈ Obj ( alg m ) and α ∈ ◆ 0 , such that A ( i ) = ( A ( i ) ) � α � � � ∀ i ∈ [ m ] ∃ a family of subspaces A ( i ) � � α � and A ( i ) is a graded algebra � � α ∈ ◆ 0 • morphisms j ∈ Morph alg ◆ 0 m ( B , A ) are elements of Morph alg m ( B , A ) and j ↾ B ( i ) , i ∈ [ m ] is also homogeneous • objects of calg ◆ 0 ii.) are commutative, unital, ◆ 0 -graded algebras ✶ • morphisms are homogeneous, unital algebra homomorphisms Lemma 1 ( alg ◆ 0 m , ⊔ , { 0 } ) and ( calg ◆ 0 ✶ , ⊗ , ❈ ) are tensor categories 9 / 27

  12. Central Limit Theorem for General Universal Products 1 Essential definitions 2 Definition of Lachs Functor 3 Mini digression: comonoids and cotensor functors 4 Lachs Functor is cotensor functor 5 Convolution products and exponential series 6 Central Limit Theorem 10 / 27

  13. Proposition 1 ([MS17, Prop. 5.1]) if ⊙ is u.a.u.-product in algP d , m ⇒ ∀ A i ∈ Obj ( alg m ) , i ∈ [2] ∃ ! linear mapping S( A 1 ) ⊗ d ⊗ S( A 2 ) ⊗ d σ ⊙ A 1 . A 2 : ( A 1 ⊔ A 2 ) d � ( A i ) d � ∗ , i ∈ [ d ] the diagram is commutative such that for all ϕ i ∈ σ ⊙ A 1 , A 2 S( A 1 ) ⊗ d ⊗ S( A 2 ) ⊗ d ( A 1 ⊔ A 2 ) d . ϕ 1 ⊙ ϕ 2 S ( ϕ 1 ) ⊗ S ( ϕ 2 ) ❈ Lemma 2 stated linear mappings σ ⊙ A 1 , A 2 are even homogeneous 11 / 27

  14. Definition 6 (Lachs Functor, [Lac15] 2 )  m ) ∋ ( A , ( A ( i ) ) i ∈ [ m ] , (( A ( i ) ) � α � ) ( i,α ) ∈ ([ m ] × ◆ 0 ) ) Obj ( alg ◆ 0    � �  � (S( A d )) � α � � S( A d ) , ∈ Obj ( calg ◆ 0 ✶ ) S : Ñ α ∈ ◆ 0    m ( B , A ) ∋ j Ñ S( j d ) ∈ Morph calg ◆ 0 ✶ (S( B d ) , S( A d ))  Morph alg ◆ 0 Theorem 1 ([Lac15, Thm. 5.2.4]) if ⊙ u.a.u.-product, g 0 : S( { 0 } d ) ❈ with g 0 ( ✶ S( { 0 } d ) ) = 1, then ( S , S ( σ ⊙ ) , g 0 ) is cotensor functor • What does this mean??? • What are the consequences??? 2 S. Lachs. “A New Family of Universal Products and Aspects of a Non-Positive Quantum Probability Theory”. PhD thesis. Ernst-Moritz-Arndt-Universit¨ at Greifswald, 2015. 12 / 27

  15. Central Limit Theorem for General Universal Products 1 Essential definitions 2 Definition of Lachs Functor 3 Mini digression: comonoids and cotensor functors 4 Lachs Functor is cotensor functor 5 Convolution products and exponential series 6 Central Limit Theorem 13 / 27

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend