cellular automaton decoders for topological quantum
play

Cellular-automaton decoders for topological quantum memories - PowerPoint PPT Presentation

-Automaton Decoders Dynamic Setting Outlook & Conclusion Cellular-automaton decoders for topological quantum memories arXiv:1406.2338 Michael Herold 1 Earl T. Campbell 1 , 2 Jens Eisert 1 Michael J. Kastoryano 1 , 3 1 Freie Universitt


  1. φ -Automaton Decoders Dynamic Setting Outlook & Conclusion Cellular-automaton decoders for topological quantum memories arXiv:1406.2338 Michael Herold 1 Earl T. Campbell 1 , 2 Jens Eisert 1 Michael J. Kastoryano 1 , 3 1 Freie Universität Berlin 2 University of Sheffield 3 University of Copenhagen Third International Conference on Quantum Error Correction Zürich, December 2014 Michael Herold Freie Universität Berlin

  2. φ -Automaton Decoders Dynamic Setting Outlook & Conclusion Outline ◮ φ -Automaton Decoders 2D ∗ -decoder 3D-decoder ◮ Dynamic Setting ◮ Outlook & Conclusion Michael Herold Freie Universität Berlin

  3. φ -Automaton Decoders Dynamic Setting Outlook & Conclusion New decoders for the 2D toric code? ◮ Sophisticated decoders exist Realspace RG Decoder O ( log L ) 1 MWPM O ( L 2 ) 2 ◮ Parallelization does not imply locality Hidden communication costs Not necessarily suited for embedded hardware ◮ Question we address Natural parallelization without hidden costs Connecting decoding with physical systems 1 G. Duclos-Cianci and D. Poulin, Phys. Rev. Lett. 104 , 050504 (2010) 2 A. G. Fowler, A. C. Whiteside, and L. C. L. Hollenberg, Phys. Rev. Lett. 108 , 180501 (2012) Michael Herold Freie Universität Berlin

  4. φ -Automaton Decoders Dynamic Setting Outlook & Conclusion φ -Automaton Decoders Michael Herold Freie Universität Berlin

  5. φ -Automaton Decoders Dynamic Setting Outlook & Conclusion 2D toric code ◮ Consider X -errors with probability p ◮ Consider plaquette operators ( Z � ) Michael Herold Freie Universität Berlin

  6. φ -Automaton Decoders Dynamic Setting Outlook & Conclusion Setting: fields for the anyons Michael Herold Freie Universität Berlin

  7. φ -Automaton Decoders Dynamic Setting Outlook & Conclusion Setting: fields for the anyons Michael Herold Freie Universität Berlin

  8. φ -Automaton Decoders Dynamic Setting Outlook & Conclusion Setting: fields for the anyons ◮ Implementation as classical cellular automaton? Michael Herold Freie Universität Berlin

  9. φ -Automaton Decoders Dynamic Setting Outlook & Conclusion Local field generation ∇ 2 Φ( r ) = q ( r ) Differential equation discretization # „ r ∈ R D � x ∈ Z D � Set of linear equations − 2 D φ ( x ) + φ ( y ) = q ( x ) � y , x � Jacobi method # „ φ ( x ) � φ t + 1 ( x ) φ ( y ) � φ t ( y ) Interation φ t + 1 ( x ) = avg φ t ( y ) + q ( x ) � y , x � Michael Herold Freie Universität Berlin

  10. φ -Automaton Decoders Dynamic Setting Outlook & Conclusion Local field generation ∇ 2 Φ( r ) = q ( r ) Differential equation discretization # „ r ∈ R D � x ∈ Z D � Set of linear equations − 2 D φ ( x ) + φ ( y ) = q ( x ) � y , x � Jacobi method # „ φ ( x ) � φ t + 1 ( x ) φ ( y ) � φ t ( y ) Interation φ t + 1 ( x ) = avg φ t ( y ) + q ( x ) � y , x � Michael Herold Freie Universität Berlin

  11. φ -Automaton Decoders Dynamic Setting Outlook & Conclusion Local field generation ∇ 2 Φ( r ) = q ( r ) Differential equation discretization # „ r ∈ R D � x ∈ Z D � Set of linear equations − 2 D φ ( x ) + φ ( y ) = q ( x ) � y , x � Jacobi method # „ φ ( x ) � φ t + 1 ( x ) φ ( y ) � φ t ( y ) Interation φ t + 1 ( x ) = avg φ t ( y ) + q ( x ) � y , x � Michael Herold Freie Universität Berlin

  12. φ -Automaton Decoders Dynamic Setting Outlook & Conclusion 1. Field-updates ( φ -automaton) ◮ Every cell stores a field value φ ( x ) ◮ Update rule: Average of neighboring fields + charge Michael Herold Freie Universität Berlin

  13. φ -Automaton Decoders Dynamic Setting Outlook & Conclusion 2. Anyon-updates ◮ Anyons move via X -flips on crossed edges ◮ Update rule: Move to the neighbor cell with maximal φ -value Michael Herold Freie Universität Berlin

  14. φ -Automaton Decoders Dynamic Setting Outlook & Conclusion The decoding algorithm Sequence ◮ c × field-update ◮ 1 × anyon-update ◮ Algorithm: Repeat sequence until all anyons are fused Field velocity c Parameter for the ‘speed of field propagation’ Michael Herold Freie Universität Berlin

  15. φ -Automaton Decoders Dynamic Setting Outlook & Conclusion The 2D ∗ -decoder Sequence ∗ ◮ c × field-update ◮ 1 × anyon-update c → c + 0 . 2 ◮ ◮ Algorithm: Repeat sequence ∗ until all anyons are fused Field velocity c Parameter for the ‘speed of field propagation’ Michael Herold Freie Universität Berlin

  16. φ -Automaton Decoders Dynamic Setting Outlook & Conclusion 2D ∗ -decoder: numerical analysis Exponential suppression Recovery threshold 8 . 2 % 0.5 p = 7 % S YS . SIZE L 100 D ECODER FAIL RATE D ECODER FAIL RATE 0.4 10 − 1 200 300 400 500 0.3 0.2 0.1 10 − 2 8 % 8.1 % 8.2 % 8.3 % 8.4 % 0 20 40 60 80 100 P HYSICAL ERROR RATE p S YSTEM SIZE ℓ ◮ Runtime: O ( log 7 . 5 L ) ◮ Resembles Wootton’s decoder 3 3 J. R. Wootton, A simple decoder for topological codes , arXiv:1310.2393 Michael Herold Freie Universität Berlin

  17. φ -Automaton Decoders Dynamic Setting Outlook & Conclusion Avoiding sequence dependence ◮ Finding the right field c → ∞ must not be a problem Before: Poisson’s equation in 2D − log r profile Idea: Try fields of the form φ ( r ) ∼ 1 r α ◮ Simulation with explicit fields, no cellular automaton Anyons move towards max. field (as before) Michael Herold Freie Universität Berlin

  18. φ -Automaton Decoders Dynamic Setting Outlook & Conclusion Avoiding sequence dependence ◮ Finding the right field c → ∞ must not be a problem Before: Poisson’s equation in 2D − log r profile Idea: Try fields of the form φ ( r ) ∼ 1 r α ◮ Simulation with explicit fields, no cellular automaton Anyons move towards max. field (as before) Michael Herold Freie Universität Berlin

  19. φ -Automaton Decoders Dynamic Setting Outlook & Conclusion Avoiding sequence dependence ◮ Idea: Try fields of the form φ ( r ) ∼ 1 / r α ◮ Conjecture: At α = 1, transition from not-decoding to decoding regime 100 S YSTEM SIZE L 75 50 0.01 0.1 25 D ECODER FAIL RATE 0 0.5 1 1.5 2 L ONG RANGE PARAMETER α Michael Herold Freie Universität Berlin

  20. φ -Automaton Decoders Dynamic Setting Outlook & Conclusion Avoiding sequence dependence ◮ Conjecture: At α = 1, transition from not-decoding to decoding regime ◮ ⇒ φ ( r ) ∼ 1 / r should work as decoder 0.6 S YS . SIZE L 100 0.5 D ECODER FAIL RATE 200 300 400 0.4 500 0.3 0.2 0.1 6.1 % 6.2 % 6.3 % 6.4 % 6.5 % P HYSICAL ERROR RATE p Michael Herold Freie Universität Berlin

  21. φ -Automaton Decoders Dynamic Setting Outlook & Conclusion 3D φ -automaton L Michael Herold Freie Universität Berlin

  22. φ -Automaton Decoders Dynamic Setting Outlook & Conclusion 3D φ -automaton L Michael Herold Freie Universität Berlin

  23. φ -Automaton Decoders Dynamic Setting Outlook & Conclusion 3D φ -automaton ◮ Sufficient field convergence if c ( L ) ∼ log 2 L L Michael Herold Freie Universität Berlin

  24. φ -Automaton Decoders Dynamic Setting Outlook & Conclusion 3D decoder: numerical analysis Exponential suppression Recovery threshold: 6 . 1 % 0.5 p = 4 % S YS . SIZE L 10 − 1 25 D ECODER FAIL RATE D ECODER FAIL RATE 0.4 50 75 100 125 0.3 10 − 2 0.2 10 − 3 0.1 5.8 % 6 % 6.2 % 6.4 % 6.6 % 0 10 20 30 40 50 60 70 80 90 P HYSICAL ERROR RATE p S YSTEM SIZE ℓ ◮ Runtime: O ( log 3 L ) ◮ Fundamentally new working principle Michael Herold Freie Universität Berlin

  25. φ -Automaton Decoders Dynamic Setting Outlook & Conclusion Dynamic Setting Michael Herold Freie Universität Berlin

  26. φ -Automaton Decoders Dynamic Setting Outlook & Conclusion Static setting Extract error syndrome Apply corrections Run decoder Dynamic setting Extract error syndrome · · · #„ #„ #„ #„ #„ #„ #„ Run decoder · · · #„ #„ #„ #„ #„ #„ #„ Apply corrections · · · #„ #„ #„ #„ #„ #„ #„ ◮ Decoder has to take new information into account ◮ 3D decoder has no ‘time zero’ Promising candidate to work in dynamic setting Michael Herold Freie Universität Berlin

  27. φ -Automaton Decoders Dynamic Setting Outlook & Conclusion Static setting Extract error syndrome Apply corrections Run decoder Dynamic setting Extract error syndrome · · · #„ #„ #„ #„ #„ #„ #„ Run decoder · · · #„ #„ #„ #„ #„ #„ #„ Apply corrections · · · #„ #„ #„ #„ #„ #„ #„ ◮ Decoder has to take new information into account ◮ 3D decoder has no ‘time zero’ Promising candidate to work in dynamic setting Michael Herold Freie Universität Berlin

  28. φ -Automaton Decoders Dynamic Setting Outlook & Conclusion Static setting Extract error syndrome Apply corrections Run decoder Dynamic setting Extract error syndrome · · · #„ #„ #„ Field-updates · · · #„ #„ #„ #„ #„ #„ #„ Anyon-updates · · · #„ #„ #„ ◮ Decoder has to take new information into account ◮ 3D decoder has no ‘time zero’ Promising candidate to work in dynamic setting Michael Herold Freie Universität Berlin

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend