catching integrability with fishnets and instantons
play

Catching integrability with fishnets and instantons Gregory - PowerPoint PPT Presentation

Catching integrability with fishnets and instantons Gregory Korchemsky IPhT, Saclay Part 1: In collaboration with Nikolay Gromov, Vladimir Kazakov, Stefano Negro, Grigory Sizov arXiv:1706.04167 Part 2: In collaboration with Fernando Alday


  1. Catching integrability with fishnets and instantons Gregory Korchemsky IPhT, Saclay Part 1: In collaboration with Nikolay Gromov, Vladimir Kazakov, Stefano Negro, Grigory Sizov arXiv:1706.04167 Part 2: In collaboration with Fernando Alday arXiv:1605.06346, 1609.08164, 1610.01425, 1704.00448 IGST 17, July 20, 2017 - p. 1/26

  2. Integrability and fishnet graphs ✔ Fishnet graphs are four-dimensional scalar conformally invariant Feynman diagrams ✔ Define completely integrable lattice model [Zamolodchikov’80] ✔ Appear everywhere in planar N = 4 SYM: ✗ Scattering amplitudes ✗ Correlation functions ✔ What is the relation between integrability of planar N = 4 SYM and fishnet Feynman diagrams? ✔ Simplified model: strongly twisted N = 4 SYM at weak coupling [Joao Caetano, Dima Chicherin talks] ✗ A non-unitary ‘chiral’ (almost) CFT dominated by fishnet graphs ✗ Integrable in planar limit, related to conformal SU (2 , 2) spin chain This talk: use integrability to compute exactly the scaling dimensions of BMN operators - p. 2/26

  3. Strongly twisted N = 4 SYM L = − 1 µν − 1 i D µ φ i + i ¯ ψ A Dψ A + L int 2 D µ φ † 4 F 2 [Leigh,Strassler][Frolov] � 1 j , φ j } − e − iǫ ijk γ k φ † 4 { φ † i , φ i }{ φ † i φ † L int = g 2 j φ i φ j � − e − i i i 2 γ − 2 γ − 2 ǫ jkm γ + ψ j φ j ¯ ψ 4 φ j ¯ ψ k φ i ¯ ψ j + c.c. ¯ ¯ m ¯ ψ 4 + e ψ j + iǫ ijk e j j Twist parameters γ ± 1 = − ( γ 3 ± γ 2 ) / 2 , γ ± 2 = − ( γ 3 ± γ 2 ) / 2 , Is expected to be integrable in the planar limit Double scaling limit: strong twist + weak coupling [Gurdogan,Kazakov] g 2 → 0 , ξ 2 = g 2 e − iγ 3 = fixed γ 1 , 2 = fixed , γ 3 → − i ∞ , Gauge field, fermions and one scalar decouple L = − 1 1 ∂ µ φ 1 − 1 2 ∂ µ φ † 2 ∂ µ φ † 2 ∂ µ φ 2 + ξ 2 φ † 1 φ † 2 φ 1 φ 2 Supersymmetry and R − symmetry is broken PSU (2 , 2 | 4) → SU (2 , 2) × U (1) × U (1) - p. 3/26

  4. Bi-scalar chiral CFT � 1 � 1 ∂ µ φ 1 + 1 2 ∂ µ φ † 2 ∂ µ φ † 2 ∂ µ φ 2 + ξ 2 φ † 1 φ † L = N c 2 φ 1 φ 2 Non-unitary theory, chiral vertex Feynman rules: φ † φ † φ 2 φ 1 2 1 No mass or vertex renormalization in the planar limit Is not complete at quantum level [Fokken,Sieg,Wilhelm’14] ✔ Quantum corrections induce new interaction vertices given by double trace operators ✔ ξ 2 does not run in the planar limit, but new couplings do run – conformal anomaly! ✔ Irrelevant in the planar limit for operator of length J ≥ 3 - p. 4/26

  5. BMN vacuum Operator with SU (2 , 2) × U (1) 2 charges (∆ , 0 , 0 | J, 0) O J ( x ) = tr[ φ J 1 ] Protected in undeformed N = 4 SYM but receive quantum corrections in bi-scalar chiral CFT 1 � O J ( x ) ¯ ∆ J ( ξ 2 ) = J + γ J ( ξ 2 ) O J (0) � ∼ ( x 2 ) ∆ J ( ξ 2 ) , Globe-like Feynman diagrams 0 � O J ( x ) ¯ O J (0) � ∼ γ J ∼ x Anomalous dimension comes from integration in the vicinity of poles (wheel-like graphs) J ξ 2 J + γ (2) J ξ 4 J + . . . γ J = γ (1) Expansion runs in powers of ξ 2 J - p. 5/26

  6. Anomalous dimensions from wheel graphs J ξ 2 J + γ (2) J ξ 4 J + . . . γ J = γ (1) Anomalous dimension at M wrappings γ ( M ) = wheel graph with M frames J � 2 J − 2 � γ (1) γ (2) = = − 2 ζ 2 J − 3 , = J J J − 1 [Broadhurst’85] Double wrapping: [Ahn,Bajnok,Bombardelli,Nepomechie’13] � 189 ζ 7 − 144 ζ 32 � γ (2) J =3 = [Panzer’15] � � γ (2) 309 ζ 11 + 16 ζ 3 , 8 + 20 ζ 5 , 6 − 4 ζ 6 , 5 + 40 ζ 8 , 3 − 8 ζ 3 , 3 , 5 + 40( ζ 3 , 5 , 3 + ζ 5 , 3 , 3 ) − 200 ζ 2 J =4 = 4 5 γ (2) = Sum of multiple zeta values ζ i 1 ,i 2 ,... [Gurdogan,Kazakov’15] J This talk: use integrability to find γ J ( ξ ) for J = 3 and arbitrary ξ - p. 6/26

  7. Wheel graphs and Heisenberg SU (2 , 2) spin chain Wheel graphs are generated by integral operator [Gurdogan,Kazakov’15] J � 1 H J ( x , y ) = ( x i − y i ) 2 ( y i − y i +1 ) 2 = x J x 2 x 1 i =1 y 2 y J y 1 T J,M ( x , y ) = H J ◦ H J ◦ · · · ◦ H J = � �� � M Correlation function 0 � 1 ξ 2 JM � 0 |H M � O J ( x ) ¯ O J (0) � ∼ J | x � = � 0 | | x � = 1 − ξ 2 J H J M ≥ 0 - p. 7/26 x

  8. Wheel graphs and Heisenberg SU (2 , 2) spin chain II Fundamental transfer matrix for noncompact SU (2 , 2) spin chain � � T J ( u ) = tr 0 R 01 ( u ) R 02 ( u ) . . . R 0 J ( u ) R 12 ( u ) − integral operator, solution to Yang-Baxter equation for the principal series of the 4D conformal group [Derkachov,GK,Manashov’01], [Chicherin,Derkachov,Isaev’13] x 1 x 1 c ( u ) x 2 R u ( x 1 , x 2 | y 1 , y 2 ) = y 2 12 ) − u +1 = ( x 2 12 ) − u − 1 [( x 1 − y 2 ) 2 ( x 2 − y 1 ) 2 ] u +2 ( y 2 y 1 Diagrammatic representation of the transfer matrix x 2 x J x 2 x J x 1 x 1 x 1 x 1 u = − 1 ... ... T J ( u ) = − − − − → y J y J y 1 y 2 y 1 y 2 y J H J ∼ T J ( − 1) Fishnet generating operator is the special case of the transfer matrix - p. 8/26

  9. Baxter equation for length J = 3 ✔ Baxter equation for the SU (2 , 2) spin chain � � � � u + i u − i A ( u + i ) q ( u + 2 i ) − B q ( u + i )+ C ( u ) q ( u ) − B q ( u − i )+ A ( u − i ) q ( u − 2 i ) = 0 2 2 A ( u ) , B ( u ) , C ( u ) transfer matrices, sum over local integrals of motion ✔ For the BMN operators of length J = 3 , it factorizes into the product of 2nd order Baxter eqs � (∆ − 1)(∆ − 3) � − m u 3 − 2 q ( u ) + q ( u + i ) + q ( u − i ) = 0 4 u 2 ∆ − scaling dimension, m − integral of motion ✔ The quantization conditions for ∆ and m follow from the double scaling limit of Quantum Spectral Curve for twisted N = 4 SYM [Gromov,Kazakov,Leurent,Volin’15] m 2 = − ξ 6 , q 4 (0 , m ) q 2 (0 , − m ) + q 2 (0 , m ) q 4 (0 , − m ) = 0 in terms of ‘pure’ solutions q 2 ( u, m ) and q 4 ( u, m ) with large u asymptotics q 2 ( u, m ) ∼ u ∆ / 2 − 1 / 2 , q 4 ( u, m ) ∼ u − ∆ / 2+3 / 2 , u → ∞ - p. 9/26

  10. ✂ ✁ ✂ ✁ Numerical solution for J = 3 The scaling dimension ∆ 3 of the BMN operator O 3 = tr( φ 3 1 ) for arbitrary coupling ξ 3 Re[ ( ^3)] Im[ ( ^3)] 3.0 1.5 2.5 1.0 2.0 0.5 1.5 0.1 0.2 0.3 0.4 0.5 1.0 - 0.5 - 1.0 0.5 - 1.5 0.1 0.2 0.3 0.4 0.5 The scaling dimension becomes imaginary at ξ 3 ⋆ ≈ 0 . 2 � ξ 3 ⋆ − ξ 3 ∆ 3 ( ξ ) = 2 + c Weak coupling expansion has finite convergency radius Nonunitary CFT = ⇒ complex scaling dimensions, no unitary bounds on ∆ ’s At ξ = ξ ⋆ the operator O ∆ collides with its shadow O 4 − ∆ - p. 10/26

  11. Weak and strong coupling expansion at J = 3 ✔ At weak coupling ξ < 1 the Baxter equation can be solved perturbatively in m 2 = − ξ 6 + ξ 18 � ∆ 3 − 3 = − 12 ζ 3 ξ 6 + ξ 12 � 189 ζ 7 − 144 ζ 32 � − 1944 ζ 8 , 2 , 1 − 3024 ζ 33 − 3024 ζ 5 ζ 32 + 6804 ζ 7 ζ 3 � + 198 π 8 ζ 3 + 612 π 6 ζ 5 + 270 π 4 ζ 7 + 5994 π 2 ζ 9 − 925911 ζ 11 + O ( ξ 24 ) 175 35 8 where ζ i 1 ,...,i k = � 1 . . . n i k n 1 > ··· >n k > 0 1 / ( n i 1 k ) are multiple zeta functions ✔ At strong coupling ξ ≫ 1 the Baxter equation can be solved semiclassically (see below) � √ (16 ξ 3 ) + 55 1 (16 ξ 3 ) 2 + 2537 1 1 2 ξ 3 / 2 ∆ 3 − 2 = i 2 1 + (16 ξ 3 ) 3 + 2 2 � + 830731 (16 ξ 3 ) 4 + 98920663 1 (16 ξ 3 ) 5 + 31690179795 1 1 (16 ξ 3 ) 6 + O ( ξ − 21 ) . 8 8 16 Expansion coefficients grow factorially, asymptotic Borel nonsummable series Receives nonperturbative corrections ∆ 3 ∼ e − cξ 3 (similar to the cusp in N = 4 SYM) ✔ Excellent agreement with numerical results ✔ Generalization to tr( φ J 1 ) with J > 3 (in progress) - p. 11/26

  12. Excited states with the U (1) charge J = 3 Operators with the same SU (2 , 2) × U (1) 2 charge (∆ , 0 , 0 | J = 3 , 0) but higher length � 2 ) n 2 � 1 ( φ 1 φ † 1 ) n 1 ( φ 2 φ † φ 3 O n 1 ,n 2 = tr + permutations + derivatives ‘Length’ of the operator ∆(0) = 3 + 2 n 1 + 2 n 2 � 1 ) n 1 � 1 ( φ 1 φ † φ 3 Protected operators O n 1 , 0 = tr Operators of length 5 O 1 = tr( φ † O 2 = tr( φ † O 3 = tr( φ † O 4 = tr( φ † 2 φ 3 2 φ 2 2 φ 1 φ 2 φ 2 2 φ 2 φ 3 1 φ 2 ) , 1 φ 2 φ 1 ) , 1 ) , 1 ) φ † 2 φ 1 → φ 1 φ † φ † 2 φ 1 φ 2 → φ 1 → φ 2 φ 1 φ † φ 1 φ 2 → φ 2 φ 1 , Mixing to leading order 2 , 2 φ † 2 φ 1 φ 2 φ 1 φ 1 O 3 → O 4 O 3 → O 4 O 3 → O 2 - p. 12/26

  13. Logarithmic multiplet Mixinig matrix µ d dµ O i ( x ) = V ij O j ( x ) for operators of length 5     4 ξ 2 O ( ξ 4 ) O ( ξ 6 ) 0 0 1 0 0     4 ξ 2 O ( ξ 4 ) 0 0 0 0 0 0      = U − 1 V =  U     − ξ 4 4 ξ 2 − 2 iξ 3   0 0 0 0 0 2 iξ 3 0 0 0 0 0 0 0 ⇒ Nonunitary CFT = Nonhermitian mixing matrix Lower block describes two conformal operators ∆ ± = 5 ± 2 iξ 3 Upper block is Jordan cell of rank r = 2 Logarithmic multiplet � � 1 0 1 � ˜ O i ( x ) ˜ O j (0) � = ln( x 2 µ 2 ) ( x 2 ) 5 1 The same pattern takes place for operators of higher length Chiral bi-scalar CFT = Logarithmic CFT 4 [Caetano’16] The Baxter equation + QSC allows us to predict the scaling dimensions for arbitrary ξ 2 - p. 13/26

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend