carbon
play

Carbon From Graphite to Nanotubes Michael Kleinert 28th April 2011 - PowerPoint PPT Presentation

Carbon From Graphite to Nanotubes Michael Kleinert 28th April 2011 http://en.wikipedia.org/wiki/File:FlyingThroughNanotube.png Content Timeline Graphite Diamond t 30,000 BC Rob Lavinsky, iRocks.com


  1. Carbon From Graphite to Nanotubes Michael Kleinert 28th April 2011 http://en.wikipedia.org/wiki/File:FlyingThroughNanotube.png

  2. Content – Timeline Graphite Diamond t 30,000 BC Rob Lavinsky, iRocks.com http://en.wikipedia.org/wiki/File:Apollo_synthetic_diamond.jpg http://de.wikipedia.org/w/index.php?title=Datei:GraphitGitter4.png&filetimestamp=20101021113501 28th April 2011 http://www.jesus.ch/www/lfiles/img/38293.jpg

  3. Content – Timeline t 28th April 2011

  4. Content – Timeline Fullerenes Nanotubes t 1985 1990s - Today 28th April 2011 http://en.wikipedia.org/wiki/File:Kohlenstoffnanoroehre_Animation.gif

  5. Content – Timeline Graphenes Diamondoids t 2004 - Today http://en.wikipedia.org/wiki/File:Diamondoids.png 28th April 2011 http://de.wikipedia.org/w/index.php?title=Datei:Graphen.jpg&filetimestamp=20100826054350

  6. Content – Timeline Graphite Diamond t 30,000 BC Rob Lavinsky, iRocks.com http://en.wikipedia.org/wiki/File:Apollo_synthetic_diamond.jpg http://de.wikipedia.org/w/index.php?title=Datei:GraphitGitter4.png&filetimestamp=20101021113501 28th April 2011 http://www.jesus.ch/www/lfiles/img/38293.jpg

  7. Variability of Carbon Graphite Diamond • hexagonal lattice • cubic lattice • 1-2 on Mohs scale • 10 on Mohs scale • tunable • thermal conductor A B A 28th April 2011 http://commons.wikimedia.org/wiki/File:Diamonds_glitter.png

  8. Variability of Carbon Diamond Graphite http://www.nextnano.de/nextnano3/images/tutorial/1DTightBinding_bulk_GaAs_GaP/BandStructureC_Vogl.jpg http://ruby.chemie.uni-freiburg.de/Vorlesung/Gif_bilder/Strukturchemie/c_graphit_bw.png 28th April 2011 Rob Lavinsky, iRocks.com

  9. Physical Conculsion Diamond is beautiful but Graphite / Graphene is fascinating ! 28th April 2011

  10. Content – Timeline Fullerenes Nanotubes t 1985 1990s - Today 28th April 2011 http://en.wikipedia.org/wiki/File:Kohlenstoffnanoroehre_Animation.gif

  11. Fullerenes : 0.7 nm diameter 28th April 2011 Nobel Lectures, Chemistry 1996-2000, Editor Ingmar Grenthe, World Scientific Publishing Co., Singapore, 2003

  12. 1996 – Nobel Prize in Chemistry Robert Curl & Harold Kroto & Richard Smalley "for their discovery of fullerenes" 28th April 2011 Nobel Lectures, Chemistry 1996-2000 , Editor Ingmar Grenthe, World Scientific Publishing Co., Singapore, 2003

  13. 1996 – Nobel Prize in Chemistry • But why did THEY got the Nobel Prize? • Smalley: 28th April 2011 Nobel Lectures, Chemistry 1996-2000, Editor Ingmar Grenthe, World Scientific Publishing Co., Singapore, 2003

  14. Synthesis of Fullerenes Supersonic laser-vaporization nozzle source 28th April 2011 Nobel Lectures, Chemistry 1996-2000, Editor Ingmar Grenthe, World Scientific Publishing Co., Singapore, 2003

  15. Synthesis of Fullerenes 28th April 2011 Nobel Lectures, Chemistry 1996-2000, Editor Ingmar Grenthe, World Scientific Publishing Co., Singapore, 2003

  16. Synthesis of Fullerenes • C 60 intensity unaffected by the boiling temperature • “magic numbers“ are stable (60, 70) C 60 C 70 http://www.cumschmidt.de/sm_fullerene.htm 28th April 2011 Acc. Chem. Res., Vol. 25, No. 3, 1992

  17. Properties of Fullerenes • Euler‟s “12 pentagon closure principle“ 28th April 2011 http://de.wikipedia.org/w/index.php?title=Datei:Fulleren_C60_Netzwerk.svg&filetimestamp=20100531203719

  18. Properties of Fullerenes • Smallest fullerene: • Stability: C 28 C 28 H 4 28th April 2011 Nobel Lectures, Chemistry 1996-2000, Editor Ingmar Grenthe, World Scientific Publishing Co., Singapore, 2003

  19. Buckminster Fullerene Montréal, CA: 1967 28th April 2011 http://de.wikipedia.org/w/index.php?title=Datei:Biosphere_montreal.JPG&filetimestamp=20071225184954

  20. The Way to Nanotubes Nanotubes Fullerenes t 1985 1990s - Today 28th April 2011 http://en.wikipedia.org/wiki/File:Kohlenstoffnanoroehre_Animation.gif

  21. SWNT and MWNT Single-Wall-Nanotubes Multi-Wall-Nanotubes (SWNT) (MWNT) Science 297 , 787 – 792 (02 August 2002) Nature 354 , 56 - 58 (07 November 1991); doi:10.1038/354056a0 28th April 2011

  22. SWNT - Characterization • single rolled graphite sheet • rolling-dependent electronic structure: – semiconductor – metallic • structure description: “chiral vector” ( n , m ) • tube diameter: 𝑒 = 𝑏 𝑜 2 + 𝑜 ∙ 𝑛 + 𝑛 2 𝜌 a = 0.246 nm 28th April 2011

  23. SWNT - Characterization n = m: armchair • metallic n or m = 0: zigzag any other: 𝑜 − 𝑛 chiral = 𝑙; 𝑙 ≠ 0 metallic 3 28th April 2011 http://de.wikipedia.org/w/index.php?title=Datei:Types_of_Carbon_Nanotubes.png&filetimestamp=20090124143631

  24. MWNT - Characterization • MWNT: similar to SWNTs – between tubes: Van-der-Waals forces Science 297 , 787 – 792 (02 August 2002) 28th April 2011

  25. Properties • periodic b.c. along tube → discrete states → like potential well • 1D electron gas → ballistic transport Physik Journal 10 , 39 – 44 (2004) 28th April 2011

  26. Properties • high currents, no heating: 4 × 10 9 A/cm 2 > 1000 x copper • strength: high Young‟s modulus – SWNT(10,10): 0.64 TPa Steel: 0.2 TPa • tensile strength: – SWNT: 37 GPa e.g. 3700 kg at 1 mm 2 cable 28th April 2011

  27. Properties • diameters: – SWNT: 0.4 – > 3 nm – MWNT: 1.4 – 100 nm • price for SWNT: – dropped form 1500 $/g in 2000 to 50 $/g in 2010 Nature 363 , 603 - 607 (17 June 1993); doi:10.1038/363605a0 Science 297 , 787 – 792 (02 August 2002) 28th April 2011

  28. Applications • improved resolution • imaging of narrow deep structures 28th April 2011

  29. Applications • Field Emission Devices – sharp tip → high electric field • e.g. Flat Panels – high brightness – wide viewing angle – wide operating temp – contacting problems! Science 297 , 787 – 792 (02 August 2002) 28th April 2011

  30. Applications • Electronic Devices – bottom-up creation • e.g. nanowires – small diameter → metal wires breakdown – growing through holes – problem: large contact resistances Physik Journal 10 , 39 – 44 (2004) 28th April 2011

  31. Applications Physik Journal 10 , 39 – 44 (2004) 28th April 2011

  32. Applications length-to-diameter ratio: > 132,000,000:1 28th April 2011

  33. Applications • NT-Field Effect Transistors: Physik Journal 10 , 39 – 44 (2004) 28th April 2011

  34. Applications • capacitors 𝐷 ∝ 𝐵/𝑒 – capacity: – nanotubes: d = 1 nm – capacitances: 200 F/g • actuators (artificial muscles): – just small voltage compared to piezos (100 V) – > 26 MPa 28th April 2011

  35. Who were the Discoverer? 28th April 2011

  36. Multi Wall Nanotubes http://de.wikipedia.org/w/index.php?title=Datei:Iijima.jpg&filetimestamp=20081013235958 Nature 354 , 56 - 58 (07 November 1991); doi:10.1038/354056a0 28th April 2011

  37. First Traces of Nanotubes ≈ 50 nm 28th April 2011

  38. Single Wall Nanotubes Nature 363 , 603 - 607 (17 June 1993); doi:10.1038/363605a0 28th April 2011

  39. Research and Developement publications vs. patents regional patents international patents patent topic Science 297 , 787 – 792 (02 August 2002) 28th April 2011

  40. Content – Timeline Graphenes Diamondoids t 2004 - Today http://en.wikipedia.org/wiki/File:Diamondoids.png 28th April 2011 http://de.wikipedia.org/w/index.php?title=Datei:Graphen.jpg&filetimestamp=20100826054350

  41. 2010 – Nobel Prize Andre Geim & Konstantin Novoselov University of Manchester "for groundbreaking experiments regarding the two-dimensional material graphene" 28th April 2011 http://nobelprize.org/nobel_prizes/physics/laureates/2010/press.html#

  42. Space-Time Conversion Graphite Diamond 3D D t Fullerenes Graphenes Nanotubes D t 0D 1D 2D 28th April 2011 http://en.wikipedia.org/wiki/File:Kohlenstoffnanoroehre_Animation.gif

  43. Importance on Graphene 2D 0D 3D 1D 28th April 2011

  44. History of Graphene “ graphene is an „academic‟ material” • theoretic calculations predict properties 1 + 4 cos 2 𝑙 𝑧 𝑏 2 + 4 cos 𝑙 𝑧 𝑏 2 ∙ cos 𝑙 𝑦 3𝑏 𝐹 = ±𝛿 0 2 𝛿 0 = 2.8 eV; a = 2.46 A 28th April 2011

  45. Electronic Structure • linear behavior at Fermi level • effective mass = 0 • relativistic behavior • description by Dirac equation → “Dirac electrons/holes” 28th April 2011 Nobel Prize introduction paper, (5 October 2010)

  46. History of Graphene • earlier attempts: – bulk graphite planes separated by atoms • large molecules → large separation – growth of single sheets ALL FAILED What have Geim and Novolesov done different? 28th April 2011

  47. Single Graphene Layers • repeated exfoliation of Highly Oriented Pyrolytic Graphite: 1. cohesive tape splits up graphite layers 2. tape fixed on SiO 2 3. tape is dissolved 28th April 2011 Science 22 October 2004: Vol. 306 no. 5696 pp. 666-669 DOI: 10.1126/science.1102896

  48. Single Graphene Layers Why did this simple method succeeded? • New recognition method! – SPM is too slow, – SEM hides layer thickness • Discovery: Visible in an optic microscope! – on thickness tuned SiO 2 layer 28th April 2011

  49. Properties → direct observation of the fine structure constant 28th April 2011 Nobel Prize introduction paper, (5 October 2010)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend