calculi for lewis conditional logic v
play

calculi for Lewis conditional logic V Marianna Girlando, Sara Negri, - PowerPoint PPT Presentation

Equivalence between internal and labelled sequent calculi for Lewis conditional logic V Marianna Girlando, Sara Negri, Nicola Olivetti Aix Marseille Universit e, Laboratoire des Sciences de lInformation et des Syst` emes; University of


  1. Equivalence between internal and labelled sequent calculi for Lewis’ conditional logic V Marianna Girlando, Sara Negri, Nicola Olivetti Aix Marseille Universit´ e, Laboratoire des Sciences de l’Information et des Syst` emes; University of Helsinki, Department of Philosophy; Aix Marseille Universit´ e, Laboratoire des Sciences de l’Information et des Syst` emes TICAMORE Meeting 15 - 18 November, Marseille 1 / 46

  2. Equivalence results Why? ◦ Investigate the interrelations between different proof systems; ◦ Deeper understanding of the systems; ◦ Transfer proof-theoretic and model theoretic results between the calculi. Partial references ◦ Fitting (2011); ◦ Poggiolesi (2011); ◦ Gor´ e and Ramanayake (2012). 2 / 46

  3. Our case study Conditional logic V I i G3V V Labelled sequent calculs Internal sequent calculus References ◦ Negri and Olivetti (2015); ◦ Olivetti and Pozzato (2015); Girlando, Lellmann, Olivetti and Pozzato (2016). 3 / 46

  4. Outline (1) Backgrounds and proof systems for V (2) Translation: from I i V to G3V (3) Inverse translation: from G3V to I i V (4) Conclusions 4 / 46

  5. Backgrounds 5 / 46

  6. Logic V Lewis (1973) Conditional operators ◦ Counterfactual conditional operator: A > B “If A were the case, then B would have been the case” ◦ Comparative plausibility operator: A � B “ A is at least as plausible as B ” ◦ The two operators are interdefinable: A > B ≡ ( ⊥ � A ) ∨ ¬ (( A ∧ ¬ B ) � ( A ∧ B )) A � B ≡ (( A ∨ B ) > ⊥ ) ∨ ¬ (( A ∨ B ) > ¬ A ) 6 / 46

  7. Logic V Lewis (1973) Language A , B :: = P | ⊥ | A → B | A � B Axioms and inference rules Axioms and inference rules of classical propositional logic; (CPR) if ⊢ A � B then ⊢ B → A (CPA) ( A � ( A ∨ B )) ∨ ( B � ( A ∨ B )) (TR) ( A � B ) ∧ ( B � C ) → ( A � C ) (CO) ( A � B ) ∨ ( B � A ) 7 / 46

  8. Neighbourhood models for V A neighbourhood model M = � W , I , � � � consists of: ◦ W , non-empty set of elements; ◦ I : W → P ( P ( W )) , function assigning to each x a set I ( x ) . Let α, β, ... be elements of I ( x ) ; ◦ � � : Atm → P ( W ) , propositional evaluation. A model for V satisfies: ◦ (Non-emptiness) for each α ∈ I ( x ) , α � ∅ ; ◦ (Nesting) for each α, β ∈ I ( x ) , α ⊆ β or β ⊆ α . 8 / 46

  9. Comparative plausibility ◦ α � ∃ A i ff ∃ y ∈ α ( y � A ) ◦ x � A � B i ff ∀ α ∈ I ( x )( α � ∃ B implies α � ∃ A ) A α β B I ( x ) 9 / 46

  10. Proof systems 10 / 46

  11. Labelled sequent calculus Negri and Olivetti (2015) Two kinds of labels ◦ labels for worlds: x , y , z . . . ◦ labels for neighbourhoods: a , b , c . . . Expressions employed in the calculus ◦ a ∈ I ( x ) ◦ x ∈ a ◦ a ⊆ b ◦ x : A ◦ a � ∃ A ≡ ∃ x ( x ∈ a and x � A ) ◦ x : A � B ≡ ∀ a ∈ I ( x )( a � ∃ B implies a � ∃ A ) 11 / 46

  12. Labelled sequent calculus Rules of G3V (1) Initial sequents x : p , Γ ⇒ ∆ , x : p x : ⊥ , Γ ⇒ ∆ Rules for local forcing x ∈ a , Γ ⇒ ∆ , x : A , a � ∃ A x ∈ a , x : A , Γ ⇒ ∆ L � ∃ ( x fresh ) R � ∃ a � ∃ A , Γ ⇒ ∆ x ∈ a , Γ ⇒ ∆ , a � ∃ A Propositional rules Γ ⇒ ∆ , x : A x : A , Γ ⇒ ∆ L ¬ R ¬ x : ¬ A , Γ ⇒ ∆ Γ ⇒ ∆ , x : ¬ A Γ ⇒ ∆ , x : A x : B , Γ ⇒ ∆ x : A , Γ ⇒ ∆ , x : B L → R → x : A → B , Γ ⇒ ∆ Γ ⇒ ∆ , x : A → B 12 / 46

  13. Labelled sequent calculus Rules of G3V (2) Rules for comparative plausibility a � ∃ B , a ∈ I ( x ) , Γ ⇒ ∆ , a � ∃ A R � ( a new ) Γ ⇒ ∆ , x : A � B a ∈ I ( x ) , x : A � B , Γ ⇒ ∆ , a � ∃ B a � ∃ A , a ∈ I ( x ) , x : A � B , Γ ⇒ ∆ L � a ∈ I ( x ) , x : A � B , Γ ⇒ ∆ Rules for inclusion a ⊆ a , Γ ⇒ ∆ c ⊆ a , c ⊆ b , b ⊆ a , Γ ⇒ ∆ x ∈ a , a ⊆ b , x ∈ b , Γ ⇒ ∆ Ref Tr L ⊆ Γ ⇒ ∆ c ⊆ b , b ⊆ a , Γ ⇒ ∆ x ∈ a , a ⊆ b , Γ ⇒ ∆ Rule for nesting a ⊆ b , a ∈ I ( x ) , b ∈ I ( x ) , Γ ⇒ ∆ b ⊆ a , a ∈ I ( x ) , b ∈ I ( x ) , Γ ⇒ ∆ Nes a ∈ I ( x ) , b ∈ I ( x ) , Γ ⇒ ∆ 13 / 46

  14. Example Derivation of A � B ∨ B � A ( AX ) a ⊆ b , a ∈ I ( x ) , b ∈ I ( x ) , y ∈ a , y ∈ b , y : B , b � ∃ A ⇒ a � ∃ A , b � ∃ B , y : B R � ∃ a ⊆ b , a ∈ I ( x ) , b ∈ I ( x ) , y ∈ a , y ∈ b , y : B , b � ∃ A ⇒ a � ∃ A , b � ∃ B L ⊆ a ⊆ b , a ∈ I ( x ) , b ∈ I ( x ) , y ∈ a , y : B , b � ∃ A ⇒ a � ∃ A , b � ∃ B L � ∃ a ⊆ b , a ∈ I ( x ) , b ∈ I ( x ) , a � ∃ B , b � ∃ A ⇒ a � ∃ A , b � ∃ B ( ∗ ) Nes a ∈ I ( x ) , b ∈ I ( x ) , a � ∃ B , b � ∃ A ⇒ a � ∃ A , b � ∃ B R � a ∈ I ( x ) , a � ∃ B ⇒ x : B � A , a � ∃ A R � ⇒ x : A � B , x : B � A The right premiss of Nes is derivable in a similar way. ( ∗ ) b ⊆ a , a ∈ I ( x ) , b ∈ I ( x ) , a � ∃ B , b � ∃ A ⇒ a � ∃ A , b � ∃ B 14 / 46

  15. Properties of G3V Basic structural properties ◦ Weakening and contraction are height-preserving admissible; ◦ All the rules are height-preserving invertible; ◦ The cut rule is admissible (syntactic cut elimination). Soundness The rules of G3V are sound with respect to neighbourhood models for V . Completeness We obtain completeness by simulating within G3V the internal sequent calculus. 15 / 46

  16. The calculus I i Olivetti and Pozzato (2015) V Blocks ◦ A block is a pair consisting of a multiset Σ of formulas and a single formula B , written [ Σ ⊳ B ] . ◦ Blocks denote disjunctions of � -formulas: [ A 1 , . . . , A m ⊳ B ] ( A 1 � B ) ∨ ( A 2 � B ) ∨ · · · ∨ ( A m � B ) Sequents ◦ Blocks can occur only in the succedent of a sequent. ◦ The formula interpretation of a sequent is given by: ∆ ′ ∨ � � � � Γ ⇒ ∆ ′ , [ Σ 1 ⊳ B 1 ] , . . . , [ Σ n ⊳ B n ] : = Γ → ( A � B i ) 1 ≤ i ≤ n A ∈ Σ i 16 / 46

  17. The calculus I i V Rules of I i V Initial sequents Γ , ⊥ ⇒ ∆ Γ , p ⇒ ∆ , p Propositional rules (standard) Rules for comparative plausibility Γ ⇒ ∆ , [ A ⊳ B ] � i R Γ ⇒ ∆ , A � B Γ , A � B ⇒ ∆ , [ B , Σ ⊳ C ] Γ , A � B ⇒ ∆ , [ Σ ⊳ A ] , [ Σ ⊳ C ] � i L Γ , A � B ⇒ ∆ , [ Σ ⊳ C ] Rules for the blocks Γ ⇒ ∆ , [ Σ 1 , Σ 2 ⊳ A ] , [ Σ 2 ⊳ B ] Γ ⇒ ∆ , [ Σ 1 ⊳ A ] , [ Σ 1 , Σ 2 ⊳ B ] com i Γ ⇒ ∆ , [ Σ 1 ⊳ A ] , [ Σ 2 ⊳ B ] A ⇒ Σ jump Γ ⇒ ∆ , [ Σ ⊳ A ] 17 / 46

  18. Example Derivation of ( A � B ) ∨ ( B � A ) ( AX ) ( AX ) B ⇒ A , B A ⇒ A , B ⇒ [ A , B ⊳ B ] , [ B ⊳ A ] jump ⇒ [ A ⊳ B ] , [ A , B ⊳ A ] jump com i ⇒ [ A ⊳ B ] , [ B ⊳ A ] ⇒ [ A ⊳ B ] , B � A � i R � i ⇒ A � B , B � A R ⇒ ( A � B ) ∨ ( B � A ) ∨ R 18 / 46

  19. Properties of I i Girlando, Lellmann, Olivetti, Pozzato (2016) V Cut elimination Proved for an equivalent version of the calculus, non-invertible and with contraction rules explicitly defined. Soundness If a formula is derivable in the calculus I i V , then it is valid in V . Completeness If formula A is valid in V , then sequent ⇒ A is derivable in I i V . 19 / 46

  20. Translation: from I i V to G3V 20 / 46

  21. Translation Idea ◦ x � A � B ≡ ∀ α ∈ I ( x )( α � ∃ B implies α � ∃ A ) ◦ [ A 1 , . . . , A n ⊳ B ] = ( A 1 � B ) ∨ ( A 2 � B ) ∨ · · · ∨ ( A n � B ) ◦ Each block is interpreted in the language of the labelled sequent calculus as expressing the semantic condition corresponding to the disjunction of � -formulas: x � [ A 1 , . . . , A n ⊳ B ] i ff ∀ α ∈ I ( x )( α � ∃ B implies α � ∃ ( A 1 ∨ · · · ∨ A n )) ◦ We introduce a new neighbourhood label a ∈ I ( x ) for each block. 21 / 46

  22. Definition From I i V to G3V Given a world label x , countably many neighbourhood labels a , b , c ... and a multiset Σ = F 1 , . . . , F k , define: ◦ Σ t x = x : F 1 , . . . , x : F k ◦ ( Γ ⇒ ∆ , [ Σ 1 ⊳ B 1 ] , . . . , [ Σ n ⊳ B n ]) t x = a 1 , . . . , a n ∈ I ( x ) , a 1 � ∃ B 1 , . . . , a n � ∃ B n , Γ t x ⇒ ∆ t x , a 1 � ∃ Σ 1 , . . . , a n � ∃ Σ n where for Σ i = S 1 i , . . . , S k i a i � ∃ Σ i = a i � ∃ S 1 i , . . . , a i � ∃ S k i 22 / 46

  23. Translation Theorem V , its translation ( Γ ⇒ ∆ ) t x is derivable If a sequent Γ ⇒ ∆ is derivable in I i in G3V . Proof Induction on the height of the derivation of a sequent Γ ⇒ ∆ , and distinction of cases. 23 / 46

  24. Translation Lemma Rule Mon ∃ is admissible in G3V : b ⊆ a , Γ ⇒ ∆ , a � ∃ A , b � ∃ A Mon ∃ b ⊆ a , Γ ⇒ ∆ , a � ∃ A ◦ idea: if α � ∃ A is false , for all neighbourhood β ⊆ α formula β � ∃ A is false; ◦ directly implements rule com i in G3V . 24 / 46

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend