building accurate workload models using markovian arrival
play

Building Accurate Workload Models Using Markovian Arrival Processes - PowerPoint PPT Presentation

Building Accurate Workload Models Using Markovian Arrival Processes Giuliano Casale Department of Computing Imperial College London Email: g.casale@imperial.ac.uk ACM SIGMETRICS Tutorial June 7th, 2011 1/68 Outline Main topics covered


  1. Building Accurate Workload Models Using Markovian Arrival Processes Giuliano Casale Department of Computing Imperial College London Email: g.casale@imperial.ac.uk ACM SIGMETRICS Tutorial – June 7th, 2011 1/68

  2. Outline Main topics covered in this tutorial: • Phase-type (PH) distributions • Moment matching • Markovian arrival processes (MAP) • Inter-arrival process fitting Important topics not covered in this tutorial: • Queueing applications, matrix-geometric method, ... • Non-Markovian workload models (e.g., Pareto, matrix exponential process, ARMA processes, fBm, wavelets, ...) • Maximum-Likelihood (ML) methods, EM algorithm, ... • ... 2/68

  3. 1. PH DISTRIBUTIONS 3/68

  4. Continuous-Time Markov Chain (CTMC) Notation • m states • λ i , j ≥ 0: (exponential) transition rate from state i to j • λ i = � m j =1 λ i , j : total outgoing rate from state i • Infinitesimal generator matrix:     − λ 1 λ 1 , 2 . . . λ 1 , m 1     λ 2 , 1 − λ 2 . . . λ 2 , m 1     Q =    , Q ✶ = 0 , ✶ =   . . . . ... . . . .    . . . . λ n , 1 λ n , 2 . . . − λ m 1 • π ( t ) = π (0) e Q t : state probability vector at time t • π i ( t ): probability of the CTMC being in state i at time t • π (0): initial state probability vector 4/68

  5. Example 1.1: CTMC Transient Analysis Initial state:   π (0) = [0 . 9 , 0 . 0 , 0 . 1 , 0 . 0] − 4 4 0 0   4 − 7 2 1 Transient analysis:   Q =   2 3 − 5 0 ∞ � ( Q t ) k π ( t ) = π (0) e Q t = π (0) 2 0 0 − 2 k ! k =0 Transient Probabilities A Sample Path 1 4 0.8 state probabilities 0.6 current state 3 0.4 2 0.2 1 0 0 5 10 15 20 25 30 35 40 45 0 0.5 1 1.5 2 2.5 3 time time 5/68

  6. Phase-Type Distribution (PH) • Q : CTMC with m = n + 1 states, last is absorbing ( λ n +1 = 0)   − λ 1 λ 1 , 2 . . . λ 1 , n λ 1 , n +1   λ 2 , 1 − λ 2 . . . λ 2 , n λ 2 , n +1 � �     T t   . . . . Q = = ... . . . .   . . . . 0 0     λ n , 1 λ n , 2 . . . − λ n λ n , n +1 0 0 . . . 0 0 • T : PH subgenerator matrix, T ✶ < 0 • t = − T ✶ : exit vector • “No mass at zero” assumption: π (0) = [ α , 0], α ✶ = 1 References: [Neu89] 6/68

  7. Example 1.2: Absorbing State Probability Initial state: π (0) = [ α , 0 . 0] = [0 . 9 , 0 . 0 , 0 . 1 , 0 . 0]       − 4 4 0 0 − 4 4 0 0   4 − 7 2 1   , t = − T ✶ =   Q =  , T = 4 − 7 2 1  2 3 − 5 0 2 3 − 5 0 0 0 0 0 1 1 absorbing state probability 0.8 0.8 state probabilities 0.6 0.6 0.4 0.4 0.2 0.2 0 0 0 5 10 15 0 5 10 15 time time 7/68

  8. PH: Fundamental Concepts Basic idea: model F ( t ) = Pr(event occurs in X ≤ t time units) as the probability mass absorbed in t time units in Q . • Semantics: entering the absorbing state models the occurrence of an event, e.g. , the arrival of a TCP packet, the completion of a job, a non-exponential state transition in a complex system • Understanding the absorption dynamics:   � ∞ � ∞ ( T t ) k T k − 1 t k t   π ( t ) = π (0) e Q t = π (0) k ! k !   k =0 k =1 0 1 • Using the definition t = − T ✶ , we get π ( t ) = [ α e T t , π n +1 ( t )] , π n +1 ( t ) = 1 − α e T t ✶ where π n +1 ( t ) is the probability mass absorbed in t time units. 8/68

  9. PH: Fundamental Formulas def = 1 − α e T t ✶ PH distribution: F ( t ) = Pr(event occurs in X ≤ t ) • PH representation: ( α , T ) • Probability Density function: f ( t ) = α e T t ( − T ) ✶ � + ∞ • (Power) Moments: E [ X k ] = t k f ( t ) dt = k ! α ( − T ) − k ✶ 0 • ( − T ) − 1 = [ τ i , j ] ≥ 0 • τ i , j : mean time spent in state j if the PH starts in state i • Median/Percentiles: no simple form, determined numerically. 9/68

  10. Example 1.3: a 3-state PH distribution     − ( λ + µ ) λ µ 0  , t =  , λ ≥ 0 .   α = [1 , 0 , 0], T = 0 − λ λ 0 0 0 − λ λ • Case µ → + ∞ : E [ X k ] = k ! λ − k (Exponential, c 2 = 1). • Case µ = λ : E [ X k ] = ( k + 1)! λ − k (Erlang-2, c 2 = 1 / 2) λ − k (Erlang-3, c 2 = 1 / 3). • Case µ = 0: E [ X k ] = ( k +2)! 2 • No choice of µ delivers c 2 > 1 Remarks: Squared coefficient of variation: c 2 def = Var [ X ] / E [ X ] 2 10/68

  11. PH: “Family Picture” - n ≤ 2 states c 2 α T Subset of � � Exponential 1 [1] − λ Hyper-Exp. � − λ � λ 1 Erlang [1 , 0] Hypo-Exp. 2 0 − λ � − λ 1 � λ 1 [ 1 Hypo-Exp. 2 , 1) [1 , 0] Coxian/APH 0 − λ 2 � − λ 1 � 0 Hyper-Exp. [1 , + ∞ ) [ α 1 , α 2 ] Coxian/APH 0 − λ 2 � − λ 1 � p 1 λ 1 [ 1 Coxian/APH 2 , + ∞ ) [1 , 0] General 0 − λ 2 � − λ 1 � p 1 λ 1 [ 1 General 2 , + ∞ ) [ α 1 , α 2 ] p 2 λ 2 − λ 2 Remarks: α 1 + α 2 = 1, c 2 def = Var [ X ] / E [ X ] 2 11/68

  12. PH: “Family Picture” - Examples — n = 3 states c 2 T α   − λ 1 0 0 [ 1   Hyper-Erlang 2 , + ∞ ) [ α 1 , α 2 , 0] 0 − λ 2 λ 2 0 0 − λ 2   − λ 1 p 1 λ 1 0 [ 1   Coxian/APH 3 , + ∞ ) [1 , 0 , 0] 0 − λ 2 p 2 λ 2 0 0 − λ 3   − λ 1 p 12 λ 1 0 [ 1   Circulant 3 , + ∞ ) [ α 1 , α 2 , α 3 ] 0 − λ 2 p 23 λ 2 p 31 λ 3 0 − λ 3   − λ 1 p 12 λ 1 p 13 λ 1 [ 1   General 3 , + ∞ ) [ α 1 , α 2 , α 3 ] p 21 λ 2 − λ 2 p 23 λ 2 p 31 λ 3 p 32 λ 3 − λ 3 Remarks: α 1 + α 2 + α 3 = 1, c 2 def = Var [ X ] / E [ X ] 2 12/68

  13. Example 1.4: Reducing to Coxian Form Algorithms exist to reduce a PH to Coxian form. • With n = 2 states (PH(2) models) this can be done analytically � − 25 � 0 • Hyper-Exponential: α ′ = [0 . 99 , 0 . 01], T ′ = , 0 − 5 F ′ ( t ) = 1 − 0 . 99 e − 25 t − 0 . 01 e − 5 t � − λ 1 � p 1 λ 1 • Coxian: α = [1 , 0], T = 0 − λ 2 • Symbolic analysis gives that in the 2-state Coxian λ 1 p 1 F ( t ) = 1 − M 1 e − λ 1 t − (1 − M 1 ) e − λ 2 t , def = 1 − M 1 λ 1 − λ 2 • Thus the two models are equivalent if λ 1 = 25, λ 2 = 5, and p 1 = 0 . 008 such that M 1 = 0 . 99. 13/68

  14. Example 1.4: Reducing to Coxian Form Compare moments of Hyper-Exponential and Coxian: Hyper-Exp Coxian 41 . 600 · 10 − 3 41 . 600 · 10 − 3 E [ X ] E [ X 2 ] 3 . 968 · 10 − 3 3 . 968 · 10 − 3 E [ X 3 ] 860 . 160 · 10 − 6 860 . 160 · 10 − 6 E [ X 4 ] 444 . 826 · 10 − 6 444 . 826 · 10 − 6 . . . . . . . . . Key message: differences between ( α ′ , T ′ ) and ( α , T ) are deceptive! In general, ( α , T ) is a redundant representation. Redundancy problem: how many degrees of freedom in PH distributions? How to cope with redundant parameters? 14/68

  15. Example 1.5: Fallacies About Degrees of Freedom � − 1 . 0407 � 0 . 3264 • Coxian, 3 parameters: α ′ = [1 , 0], T ′ = 0 − 8 . 0181 � − λ 1 � p 1 λ 1 • Fit PH(2) with 4 parameters: α = [1 , 0], T = p 2 λ 2 − λ 2 • Numerically search ( λ 1 , λ 2 , p 1 , p 2 ) that minimize the distance from Coxian’s E [ X ], E [ X 2 ], E [ X 3 ] and from E [ X 4 ] = 50 � − 13 . 4252 � 13 . 3869 T = 0 . 0018 − 1 . 0431 ... returned PH has E [ X 4 ] = 21 . 34, why is it approximately the same as the Coxian’s E [ X 4 ] = 21 . 41? • Key message: 4 parameters � = freedom to assign E [ X 4 ] • For fixed E [ X ], E [ X 2 ], E [ X 3 ], the feasible region of the PH(2) parameters yields the same E [ X 4 ] (up to numerical tolerance). 15/68

  16. PH: Degrees of Freedom • PH Moments: E [ X k ] = k ! α ( − T ) − k ✶ • A of order n , characteristic polynomial: • φ ( θ ) = det( θ I − A ) • φ ( A ) = A n + m 1 A n − 1 + . . . + m n − 1 A + m n I = 0 • A = ( − T ) − 1 implies that PH moments are linearly-dependent E [ X n ] E [ X n − 1 ] + m 1 ( n − 1)! + . . . + m n − 1 E [ X ] + m n = 0 n ! • Thus, a PH offers up to 2 n − 1 degrees of freedom (df) for fitting a workload distribution ( n − 1 moments + n terms m j ). • n = 2 states ⇒ 3 df, n = 3 ⇒ 5 df, n = 4 ⇒ 7 df, ... References: [TelH07],[CasZS07] 16/68

  17. PH: Algebra of Random Variables and Closure Properties • PH: the smallest family of distributions on ℜ + that is closed under a finite number of mixtures and convolutions. • X 1 ∼ ( α , T ) of order n , t = − T ✶ • X 2 ∼ ( β , S ) of order m , s = − S ✶ • Z = g ( X 1 , X 2 ) ∼ ( γ , R ) Convolution Mixture Minimum Maximum � Z i X i X i w.p. p i min( X i ) max( X i ) [ α , 0] [ p 1 α , p 2 β ] [ α ⊗ β ] [ α ⊗ β , 0 , 0] γ   � T � � T � T ⊕ S t ⊗ I m I n ⊗ s t · β 0   T ⊕ S 0 S 0 R 0 S 0 S 0 0 T def def • ⊗ = Kronecker product, ⊕ = Kronecker sum References: [MaiO92],[Neu89] 17/68

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend