bss ram s with nu oracle and the axiom of choice
play

BSS RAMs with \ nu-Oracle and the Axiom of Choice Christine Ganer - PowerPoint PPT Presentation

BSS RAMs with \ nu-Oracle and the Axiom of Choice Christine Ganer Hamburg 2016 BSS RAMs with \ nu-Oracle and the Axiom of Choice (History and Outline) Stephen C. Kleene Recursion Theory based on recursion and -operator Yiannis


  1. BSS RAM’s with \ nu-Oracle and the Axiom of Choice Christine Gaßner Hamburg 2016

  2. BSS RAM’s with \ nu-Oracle and the Axiom of Choice (History and Outline) ⇓ Stephen C. Kleene Recursion Theory based on recursion and µ -operator ⇓ Yiannis N. Moschovakis Generalized Recursion Theory based on recursion and ν -operator ⇓ Gaßner ν -Operators for BSS RAM’s over arbitrary mathematical structures

  3. BSS RAM’s with \ nu-Oracle and the Axiom of Choice (History and Outline) ⇓ Stephen C. Kleene Recursion Theory based on recursion and µ -operator ⇓ Yiannis N. Moschovakis Generalized Recursion Theory based on recursion and ν -operator ⇓ Gaßner ν -Operators for BSS RAM’s over arbitrary mathematical structures ⇓ Computable multi-valued correspondences ⇓ Question: Are there computable choice functions for these correspondences?

  4. BSS RAM’s with \ nu-Oracle and the Axiom of Choice (History and Outline) ⇓ Stephen C. Kleene Recursion Theory based on recursion and µ -operator ⇓ Yiannis N. Moschovakis Generalized Recursion Theory based on recursion and ν -operator ⇓ Gaßner ν -Operators for BSS RAM’s over arbitrary mathematical structures ⇓ Computable multi-valued correspondences ⇓ Question: Are there computable choice functions for these correspondences? ⇓ Outline: BSS RAM’s A characterization of [non-]deterministic semi-decidability AC n , m (in HPL) and effective AC n , m and AC ∞

  5. Computation by BSS RAM’s over Algebraic Structures (The Machines and the Allowed Instructions) Computation over A = ( U A ; C A ; f 1 , . . . , f n 1 ; R 1 , . . . , R n 2 , = ) . ���� ���� � �� � � �� � constants universe operations relations Z 1 Z 2 Z 3 Z 4 Z 5 . . . Registers for elements in U A . . . I 1 I 2 I 3 I 4 I k M Registers for indices in N

  6. Computation by BSS RAM’s over Algebraic Structures (The Machines and the Allowed Instructions) Computation over A = ( U A ; C A ; f 1 , . . . , f n 1 ; R 1 , . . . , R n 2 , = ) . ���� ���� � �� � � �� � constants universe operations relations Z 1 Z 2 Z 3 Z 4 Z 5 . . . Registers for elements in U A . . . I 1 I 2 I 3 I 4 I k M Registers for indices in N Computation instructions: ℓ : Z j := f k ( Z j 1 , . . . , Z j mk ) ( e.g. ℓ : Z j := Z j 1 + Z j 2 ) ℓ : Z j := d k ( d k ∈ C A ⊆ U A ) Branching instructions: ℓ : if Z i = Z j then goto ℓ 1 else goto ℓ 2 ℓ : if R k ( Z j 1 , . . . , Z j nk ) then goto ℓ 1 else goto ℓ 2 Copy instructions: ℓ : Z I j := Z I k Index instructions: ℓ : I j := 1 ℓ : I j := I j + 1 ℓ : if I j = I k then goto ℓ 1 else goto ℓ 2

  7. Uniform Computation over Algebraic Structures (Input and Output Procedures of Machines in M A ) U A is the universe of A � Input and output space: U ∞ i ≥ 1 U i A = df A x = ( x 1 , . . . , x n ) ∈ U ∞ Input of � A : x 1 x 2 x 3 x 4 x n

  8. Uniform Computation over Algebraic Structures (Input and Output Procedures of Machines in M A ) U A is the universe of A � Input and output space: U ∞ i ≥ 1 U i A = df A x = ( x 1 , . . . , x n ) ∈ U ∞ Input of � A : x 1 x 2 x 3 x 4 x n x n x n ↓ ↓ ↓ ↓ ↓ ↓ ↓ Z 1 Z 2 Z 3 Z 4 . . . Z n Z n + 1 Z n + 2 . . .

  9. Uniform Computation over Algebraic Structures (Input and Output Procedures of Machines in M A ) U A is the universe of A � Input and output space: U ∞ i ≥ 1 U i A = df A x = ( x 1 , . . . , x n ) ∈ U ∞ Input of � A : x 1 x 2 x 3 x 4 x n x n x n ↓ ↓ ↓ ↓ ↓ ↓ ↓ Z 1 Z 2 Z 3 Z 4 . . . Z n Z n + 1 Z n + 2 . . . I 1 I 2 I 3 I 4 . . . I k M ↑ ↑ ↑ ↑ ↑ n 1 1 1 1

  10. Uniform Computation over Algebraic Structures (Input and Output Procedures of Machines in M A ) U A is the universe of A � Input and output space: U ∞ i ≥ 1 U i A = df A x = ( x 1 , . . . , x n ) ∈ U ∞ Input of � A : x 1 x 2 x 3 x 4 x n x n x n ↓ ↓ ↓ ↓ ↓ ↓ ↓ Z 1 Z 2 Z 3 Z 4 . . . Z n Z n + 1 Z n + 2 . . . I 1 I 2 I 3 I 4 . . . I k M ↑ ↑ ↑ ↑ ↑ n 1 1 1 1 ր !!!

  11. Uniform Computation over Algebraic Structures (Input and Output Procedures of Machines in M A ) U A is the universe of A � Input and output space: U ∞ i ≥ 1 U i A = df A x = ( x 1 , . . . , x n ) ∈ U ∞ Input of � A : x 1 x 2 x 3 x 4 x n x n x n ↓ ↓ ↓ ↓ ↓ ↓ ↓ Z 1 Z 2 Z 3 Z 4 . . . Z n Z n + 1 Z n + 2 . . . I 1 I 2 I 3 I 4 . . . I k M ↑ ↑ ↑ ↑ ↑ n 1 1 1 1 ր !!! Output of Z 1 , . . . , Z I 1 .

  12. [ ν -]Semi-Decidability (The Definitions) P ⊆ U ∞ A is a decision problem . P ⊆ U ∞ A is semi-decidable x ∈ P ⇔ M ( � x ) halts on � . if there is a BSS RAM M such that � x � �� � M ( � x ) ↓ We will also use: P ⊆ U ∞ A is nondeterministically semi-decidable x ∈ P if there is a nondeterministic BSS RAM M such that � ⇔ M halts on � x for some guesses . � �� � M ( � x ) ↓ P ⊆ U ∞ A is ν -semi-decidable if there is a ν -oracle BSS RAM semi-deciding P . . . . ν -oracle BSS RAM = BSS RAM being able to use operator ν . . .

  13. µ -Oracle BSS RAM’s with µ -Operators for N ⊆ U A (Kleene’s Operator µ ) A fixed, N ⊆ U A effectively enumerable over A , f : U ∞ A → { a , b } partial function, computable over A . � �� � { 1 , 0 } Definition (Kleene’s operator for A ) µ [ f ]( x 1 , . . . , x n ) = df min { k ∈ N | f ( x 1 , . . . , x n , k ) = 1 & f ( x 1 , . . . , x n , l ) ↓ for l < k , l ∈ N }

  14. µ -Oracle BSS RAM’s with µ -Operators for N ⊆ U A (Kleene’s Operator µ ) A fixed, N ⊆ U A effectively enumerable over A , f : U ∞ A → { a , b } partial function, computable over A . � �� � { 1 , 0 } Definition (Kleene’s operator for A ) µ [ f ]( x 1 , . . . , x n ) = df min { k ∈ N | f ( x 1 , . . . , x n , k ) = 1 & f ( x 1 , . . . , x n , l ) ↓ for l < k , l ∈ N } Example A = ( N ; 0 ; + , − ; ≤ , =)  if x n + a n x n − 1 + · · · + a 1 x 0 = 0 , 1   � �� � f 0 ( a 1 , . . . , a n , x ) := p ( x )   0 otherwise . ⇒ µ [ f 0 ]( a 1 , . . . , a n ) = the smallest zero of p

  15. µ -Oracle BSS RAM’s with µ -Operators for N ⊆ U A (Kleene’s Operator µ ) A fixed, N ⊆ U A effectively enumerable over A , f : U ∞ A → { a , b } partial function, computable over A . � �� � { 1 , 0 } Definition (Kleene’s operator for A ) µ [ f ]( x 1 , . . . , x n ) = df min { k ∈ N | f ( x 1 , . . . , x n , k ) = 1 & f ( x 1 , . . . , x n , l ) ↓ for l < k , l ∈ N }

  16. µ -Oracle BSS RAM’s with µ -Operators for N ⊆ U A (Kleene’s Operator µ ) A fixed, N ⊆ U A effectively enumerable over A , f : U ∞ A → { a , b } partial function, computable over A . � �� � { 1 , 0 } Definition (Kleene’s operator for A ) µ [ f ]( x 1 , . . . , x n ) = df min { k ∈ N | f ( x 1 , . . . , x n , k ) = 1 & f ( x 1 , . . . , x n , l ) ↓ for l < k , l ∈ N } Definition (Oracle Instruction with Kleene’s operator) z 1 · · · z n ↓ ↓ ℓ : Z j := µ [ f ]( Z 1 , . . . , Z I 1 ) , if I 1 = n no minimum ⇒ the machine loops forever Properties Any µ -semi-decidable problem is semi-decidable over A .

  17. ν -Oracle BSS RAM’s for Structures with a and b (Moschovakis’ Operator ν ) A is fixed. a , b are constants of A . f : U ∞ A → { a , b } partial function, computable over A . Definition (Moschovakis’ operator for A ) ν [ f ]( x 1 , . . . , x n ) = df { y 1 ∈ U A | ( ∃ ( y 2 , . . . , y m ) ∈ U ∞ A )( f ( x 1 , . . . , x n , y 1 , y 2 , . . . , y m ) = a ) } � �� � y ∈ U ∞ � A Definition (Oracle instruction with Moschovakis’ operator) z 1 · · · z n ↓ ↓ NONDETERMINISTIC ! ℓ : Z j := ν [ f ]( Z 1 , . . . , Z I 1 ) ν [ f ]( z 1 , . . . , z n ) � = ∅ ⇒ Z j contains some z ∈ ν [ f ]( z 1 , . . . , z n ) . ν [ f ]( z 1 , . . . , z n ) = ∅ ⇒ no stop (the machine loops forever).

  18. Nondeterministic Machines versus ν -oracle Machines (Guessing Solutions and Nondeterministic Semi-Decidability) f : U ∞ A → { a , b } partial function, computable by M f over A . Properties (By ν -operator of a ν -oracle machine) x 1 · · · x n x 1 · · · x n y 1 ↓ ↓ ↓ ↓ ↓ Z j := ν [ f ]( Z 1 , . . . , Z I 1 ); . . . Z j := ν [ f ]( Z 1 , . . . , Z I 1 − 1 , Z I 1 ) . . . ↓ ↓ ⇒ f ( x 1 , . . . , x n , y 1 , . . . , y m ) = a y 1 y 2 Properties (By input-guessing procedure of nondeterm. machine) x 1 x 2 x n y 1 y 2 y m x n ↓ ↓ ↓ ↓ ↓ ↓ ↓ Z 1 Z 2 . . . Z n Z n + 1 Z n + 2 . . . Z n + m Z n + m + 1 . . . Then, simulate M f . Proposition A ⊆ U ∞ A is ν -semi-decidable iff A is nondeterm. semi-decidable.

  19. ν n -Oracle BSS RAM’s versus ν -Oracle BSS RAM’s (For Motivation: Computable Choice Functions?) A = ( N ; N ; ; =) . � if x i � = x j for all i , j with i � = j , 1 R ( x 1 , . . . , x n ) := 0 otherwise . Example ( ν n for fixed arity n ) Example ( ν for any arity) ( z 1 , . . . , z n ) ∈ N n ∈ N ∞ ( z 1 , . . . , z n ) ↓ ↓ ↓ ↓ ℓ : Z j := ν n [ R ]( Z 1 , . . . , Z n ) ℓ : Z j := ν [ R ]( Z 1 , . . . , Z I 1 )

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend