boolean function
play

Boolean Function Jean Vuillemin ENS, Paris Dimension d= D (f) - PowerPoint PPT Presentation

The Ordered Dimension of a Boolean Function Jean Vuillemin ENS, Paris Dimension d= D (f) Bound d |DD(f)| on all known bit-level DDs Minimal multi-linear diagram d = |MLD(f)| Incremental operations on MLDs Boolean Dimension 1


  1. The Ordered Dimension of a Boolean Function Jean Vuillemin ENS, Paris • Dimension d= D (f) • Bound d ≤ |DD(f)| on all known bit-level DDs • Minimal multi-linear diagram d = |MLD(f)| • Incremental operations on MLDs Boolean Dimension 1

  2. Regular Language Dimension  s | mda (R)| • MDA: minimal deterministic automaton             m da (R) m a d ( R 0 ) m da (R 1 ) R mda (R) , 0 , 1 R d      • dim (R) lo g mda (R), Dimension: 2 d d s 2 • NXA: non-deterministic XOR automata • MXA: minimal NXA w.r.t. integer word ordering Theorem (Fliess 74) Theorem (Ga.Vu. 09) • All NXA for R have size ≥d • Minimal NXA d=|MXA(R)| (R=S)  (MXA(R)=MXA(S)) • • Reduced NXA of size d exist • • Space n 2 + time n 3 minimization All reduced NXA are similar Boolean Dimension 2

  3. Binary Decision Tree    1 1 ( ) ( ) f x x x f f f i msi f 0 1 2     2 n b n : [ ] b f f x b  i | | n   2 3 ( 0)  f x x f ( 1)  f x x f n 2 n 1 2 n ? : f x f f 0 1 0 1  | | i n   n bdt (f) f ( 00) ( 10) ( 00) ( 10) f x f x f x f x  0 0 0 0 0 n (000) (100) (011) (111) f f f f     ? : ( ) 0,1, , , m x x x b dt m x x m Example 2 1 0 0 1    D (f) log | bdt(f), >| Definition 2     ( ), 1, , , , D ( ) 4 bdt m x x m m 0 1 Boolean Dimension 3

  4.  ' x x x x Reduced Ordered 2 1 2 0  ? : Example: m x x x 2 1 0 Decision Diagrams   x x x x x 0 0 2 1 2 BDD BDT MDA MXA    0 1 (1 ) f x f x f i i i     0 1 [ 0] [ 1] f f x f f x i i 0 1 0 1 0 0 1 1 Shannon  BMT MMA BMD MLD f   0 f f x  i x i i  f 0   0 1 f f f 0 1 0 0 0 1 1 0 0 1 0 1  x i Reed-Muller      bdt (f), = mda (f), = bdd (f), = mxa (f),  ☺ Invariant:      bmt (f), = mma (f), = bmd (f), mld (f), Boolean Dimension 4

  5. Examples       j k 2 k ways mux ( ) 2 msi 2 1 mx k x a x k  a k 2 j  j k     ( ) msi hw k x w x k Hidden weight  1 w j  j k     ( ) ms i 2 1 spx k x x k Scalar XOR product   2 1 i k i  i k     ( ) ms i 2 1 spo k x x k Scalar OR product   i 2 k i 1  i k       i i ( )( ) ( 2) ms i 2 1 cfp k z x z x z mod k Carry-free product  i i k   i k i k Ő spx mx ~ f mx hw spx cfp spo ☺ ☺ ☠ ☠ ☠ ☠ ☠ BDD ☺ ☺ ☺ ☠ BMD ☠ ☠ ☠ ☺ ☺ ☺ ☺ ☺ ☺   ☠ MLD Boolean Dimension 5

  6. Truth Tables f   * for        j  2 k  k k x ( ) 2 2 x ( ) j xtt ( ) 2 j j x f Exclusive     k f j k k x j k   Truth-Table         j 2 xnf ( ) mon ( ) x t t ( ) ( ) 2 f x k mon ( ) x x j k x x j j j  k x  k x   j k j k    ( ) ( ) g n f d ( ) ( ) BDT g BMT f  n d Binary Moebius Transform  ( ) ( ) BDT f BMT g oo oo   O O g f f g     n d tt ( ) ( )2 lip ( ) mon ( ) neg ( ) d f f n k k k Disjunctive   ( 1) ( ) x i x i    i i    2 2 dt t ( ) (0 1 ) x Truth-Table  n e g ( ) ' k x dnf ( ) lip ( ) f d k   i 2 j 1 ( 1 ) x i  j k  k d          0 0 ' ' ' f d x f f d d x x      ' ' x x f f 1 ' ' ' x x x x x x x x x x 0 0 1 1 0 1 0 1 0 1      (0) (0) (2) (1) (2) 98 x x x x x x x x x x XNF 0 0 2 1 2 ? : x x x m    2 1 0 xt t ( ) 010001 1 9 8 m 2  ' x x x x 2 1 2 0 202 t m    dt ( ) (01010 011) DNF    x x ' x ' x x x ' x ' x x x x x 2 0 1 2 0 1 2 0 1 2 0 1 2 8 1 2 Boolean Dimension 6

  7. Multi-Linear Diagram      0 1    1 '    0 ' f x f xf 0 1 f f x f f f x f f f f Reed-Muller Shannon f Davio f f x x x x x x’ x 0   0 1 f 1  0  1 f f f 1 f 0 f f f f f f f f  ' x x x x f 2 1 2 0     ( ) ? : x x x x m x x x 0 0 1 2 2 1 0  x   ( ) x x x x x x x x x  2 0 1 f 0 0 2 1 2  MLD(m) x 1  x 0 0 1 f f 0 1 f ' x f xf 1 MXA(m) 1 x 2 x x x 1 2 2 ' x x 0 0 ? : 1 x x x f f 2 1 0 Boolean Dimension 7

  8. Dimension Properties    DD BDD BMD FDD KDD HDD IDD deterministic     MXA BDD MLD non-deterministic Theorem Let f  B i  B have dimension d= D (f)  N  DD  DD: d≤|DD(f)| 1. linear decomposition d = D (f ~ ) 2. mirror 3. d=|MLD(f)| minimal base f=g  MLD(f)=MLD(g) 4. strong normal form d = D (f’)   f≠0 5. not D (f  g) ≤ D (f,g)< D (f)+ D (g) xor 6. D (f  g) < D (f) x D (g) 7. and  f: D (f) < 2 i/2+1 8. worst/average dim  f: | BDD (f)| < 2 i+1 /i worst/average BDD Boolean Dimension 8

  9. Minimal Base [b 1 … b d ] is a Reduced Basis for f if All RB are linearly similar. d=  (f) and bdt(f)  <b 1 … b d  >. Theorem: Unique minimal basis B=base(f)=LC[b 1 … b d ]: All RB A=[a 1 … a d ] a.s.t.  k: b k  a k and  k: b k <a k iff B  A. Equally defined by: • Xor Sorted  i<j: b i <b j <b i  b j • Reduced Echelon Form  i  j: 0=b i  2 l(bj)    xn f x x x x x 0 0 2 1 2   xtt 2 0100011 98 m   i dd {0100011,01,011,0,1} {0,1,2,6,98}   b s a e {1,0 1,001,0000011} {1,2, 8, 9 6 } Boolean Dimension 9

  10. Minimal Multi-linear Diagram   D ( ? : ) 4 m x x x ? : x x x 2 1 0 2 1 0 2   x base m ( ) 1 ( ) x x x x x 1 1 0 1 2 0 1 0 x 0    ( ) m x x x x 0 2 0 1 0 1 BDD   b x (0) 2 t x 1 0 1  x ( ) x x x   (1) 4 1 b x t x 2 0 1 2 1 2 1     x (2)( ) ( ) 96 b x b b t x t t 0 m 3 2 1 2 3 1 2     98 x t t m b b MLD 1 3 1 3 Boolean Dimension 10

  11. MLD Adder Boolean Dimension 11

  12. Incremental Operations on MLDs Broad Word Computer 1 bwc= d bops n 2 dn 2 Minimize(f) bwc bop Mirror(f) l 2 (d) bwc dl 2 (d) bop Xor(f,g) 1 bwc d bop d 2 d 3 And(f,g) bwc bop Boolean Dimension 12

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend