binary black holes in circular orbits an helical killing
play

BINARY BLACK HOLES IN CIRCULAR ORBITS: AN HELICAL KILLING VECTOR - PowerPoint PPT Presentation

BINARY BLACK HOLES IN CIRCULAR ORBITS: AN HELICAL KILLING VECTOR APPROACH Eric Gourgoulhon Silvano Bonazzola Philippe Grandcl ement Phys. Rev. D. 65 , 044020 (2002). Phys. Rev. D. 65 , 044021 (2002). 3+1


  1. ✬ ✩ BINARY BLACK HOLES IN CIRCULAR ORBITS: AN HELICAL KILLING VECTOR APPROACH Eric Gourgoulhon Silvano Bonazzola Philippe Grandcl´ ement Phys. Rev. D. 65 , 044020 (2002). Phys. Rev. D. 65 , 044021 (2002). ✫ ✪

  2. ✬ ✩ 3+1 FORMALISM (VACUUM CASE) Orthogonal projection of Einstein’s equations on spatial hypersurfaces = ⇒ split space-time into space AND time. ds 2 = − N 2 − N i N i � dt 2 + 2 N i dtdx i + γ ij dx i dx j � • Hamiltonian constraint : R + K 2 − K ij K ij = 0 • Momentum constraints : D j K ij − D i K = 0 • Evolution equations : ∂K ij R ij − 2 KikK k � � − L � N K ij = − D i D j N + N j + KK ij ∂t ∂γ ij ∂t − L � N γ ij = − 2 NK ij ✫ ✪

  3. ✬ ✩ QUASI-STATIONARITY • approximate but 4D space-time representing two black holes in exact circular orbits • Valid when τ orb . << τ grav . • Rigorous definition of Ω. • Circular orbit due to radiation. ✫ ✪

  4. ✬ ✩ HELICAL KILLING VECTOR ⇒ Helical Killing vector � Circular orbits = l . Advance δt in time ⇐ ⇒ Rotation of δϕ = Ω δt . Inertial coordinates : � ∂ � ∂ � α � α l α = + Ω ∂t ∂ϕ = const. Corotating coordinates : t x i’ � ∂ � α • such as l α = . ∂t • coordinate t is ignorable. n α � ∂ α � i l N • corotating shift β i = N i + Ω . ∂ϕ v α • functions N and γ ij are the same. Σ t α B ✫ ✪

  5. ✬ ✩ ADDITIONAL HYPOTHESIS Gauge choice : Maximum slicing K = 0 . Conformal flatness approximation : γ ij = Ψ 4 f ij . ✫ ✪

  6. ✬ ✩ ELLIPTIC EQUATIONS We solve 5 of the 10 Einstein’s equations : ∆Ψ = − Ψ 5 A ij ˆ ˆ A ij • Hamiltonian constraint : 8 A ij � ¯ ∆ β i + 1 D i ¯ D j β j = 2 ˆ ¯ D j N − 6 N ¯ � • Momentum constraints : D j ln Ψ 3 • Trace of ∂K ij ∆ N = N Ψ 4 ˆ A ij − 2 ¯ A ij ˆ D j ln Ψ ¯ D j N : ∂t A ij = Ψ 4 K ij . with ˆ A ij = Ψ − 4 K ij and ˆ 1 A ij = ⇒ ˆ 2 N ( Lβ ) ij Definition of K = ( Lβ ) ij is the conformal Killing operator : ( Lβ ) ij = ¯ D i β j + ¯ D j β i − 2 3 ¯ D k β k f ij Set of 5 non-linear, highly-coupled, elliptic equations. ✫ ✪

  7. � � ✬ ✩ CHOICE OF THE TOPOLOGY R × Misner-Lindquist. (t,r 1 θ 1 φ 1 , ) , a 1 a 2 I(P) r 1 P 3 I R I P I II I(P) a 1 a 2 I(P) (t,r θ φ 2 , , ) r 2 2 2 P 3 I R ✫ ✪

  8. ✬ ✩ ISOMETRY Mapping from M I to M II . I M I − → M II ( t, x I , y I , z I ) − → ( t, x II = x I , y II = y I , z II = z I ) � t, a 2 � ( t, r 1 , θ 1 , ϕ 1 ) − → r 1 , θ 1 , ϕ 1 1 � t, a 2 � ( t, r 2 , θ 2 , ϕ 2 ) − → r 2 , θ 2 , ϕ 2 2 Hypothesis : the 4-metric is isometric . ∂I µ ∂I ν ∂x β g µν ( I ( P )) = g αβ ( P ) ∂x α Consequence : solve only on M I with boundary conditions on the throats. ✫ ✪

  9. ✬ ✩ BOUNDARY CONDITIONS ON THE THROATS  N | S i = 0  N ( I ( P )) = ± N ( P ) = ⇒ ( or ∂ r N | S i = 0)   β r | S i = 0   − a 2   β r ( I ( P )) r 2 β r ( P )  ∂ θ β r | S i  = 0 =         β θ ( I ( P )) β θ ( P ) = ⇒ ∂ ϕ β r | S i = 0 =    β ϕ ( I ( P )) β ϕ ( P )  ∂ r β θ � = 0   =   � S i    ∂ r β ϕ | S i  = 0  � ∂ r Ψ + 1 Ψ ( I ( P )) = a � r Ψ ( P ) = ⇒ 2 a Ψ = 0 � � S i Consequence: K ij ( I ( P )) = − ∂I i ∂I j K kl ( P ) ∂x k ∂x l The throats are apparent horizons . ✫ ✪

  10. ✬ ✩ STATE OF ROTATION � β not completely fixed by isometry. � ⇒ � Corotating black holes = = 0. β � � S i Properties : • Analogy with rigidity theorem . • Throats are Killing horizons . ✫ ✪

  11. ✬ ✩ ISOMETRY AND REGULARITY Rigidity implies isometry except : ∂ r β θ � ∂ r β ϕ | S i = 0 S i = 0 and � To have a regular K :  ( Lβ ) ij ˆ A ij  =  ⇒ ( Lβ ) ij � = S i = 0 . 2 N � � N | S i = 0   So to have RIGIDITY , REGULARITY and ISOMETRY one must have : � � = 0 β � � S i � ∂ r � = 0 β � � S i In this framework it is impossible to have REGULARITY for non-corotating ✫ black holes. ✪

  12. ✬ ✩ REGULARIZATION OF THE SHIFT One solves for � β , using Dirichlet-type boundary condition : � � β = 0 � � S i At each iteration one modifies the shift vector by : β new = � � β + � β cor � β cor is chosen so that : � � β new = 0 � � S i � ∂ r � = 0 . β new � � S i At the end of a calculation : • if � β cor → 0 : exact solution. • if � β cor is small : approximate solution. • else not a solution ! ✫ ✪

  13. ✬ ✩ BOUNDARY CONDITIONS AT INFINITY To recover Minkowski space-time : N → 1 when r → ∞ Ψ → 1 when r → ∞ β → Ω ∂ � when r → ∞ ∂ϕ ✫ ✪

  14. ✬ ✩ DETERMINATION OF Ω Ω only present in the boundary condition for � β . One can solve for ANY value of Ω (example : Ω = 0 = ⇒ Misner-Lindquist). � r − 1 � SUPPLEMENTARY CONDITION : the O part of the metric when ( r → ∞ ) is identical to Schwarzschild . Ψ ∼ 1 + M ADM and N ∼ 1 − M K A priori : 2 r r ⇒ Ψ 2 N ∼ 1 + α One chooses the ONLY Ω such that : M K = M ADM ⇐ r 2 Justifications : • exact stationary asymptotical space-times. • Newtonian limit = ⇒ virial theorem. • True for binary neutron stars. ✫ ✪

  15. ✬ ✩ CONSTRUCTION OF A SEQUENCE Each configuration depends on 2 parameters : • radius of the throats a . • separation D a . Existence of a scaling factor : only one sequence . a is chosen so that : � dM ADM � = Ω . � dJ � sequence ✫ ✪

  16. ✬ ✩ AREA OF THE HORIZONS First law of thermodynamics for binary black holes : dM ADM = Ω dJ + 1 8 π ( κ 1 dA 1 + κ 2 dA 2 ) Consequence : along the sequence dA = 0. Horizon area is constant : quasi-static evolution (Second law of thermodynamics for black holes). ✫ ✪

  17. ✬ ✩ NUMERICAL METHODS Basic features : • Multi-domain : two sets of spherical coordinates. • Compactification : exact treatment of spatial infinity. • Spectral decomposition : spherical harmonics and Tchebychev polynomials. ✫ ✪

  18. ✬ ✩ NORM OF � β cor Correction (21*17*16) -1 10 Error on J (21*16*17) Correction (33*21*20) Error on J (33*21*20) -2 10 Relative error -3 10 -4 10 10 15 20 25 30 Separation parameter D/a ⇒ � J ∞ = J S ⇐ β cor = 0 ✫ ✪

  19. ✬ ✩ SMARR FORMULA -1 10 Relative error on Smarr formula -2 10 -3 10 J infinity (21*17*16) J throats (21*17*16) J infinity (33*21*20) J throats (33*21*20) -4 10 10 15 20 25 Separation parameter D/a M − 2Ω J = − 1 S i − 1 � � Ψ 2 ¯ Ψ 2 ¯ D i Nd ¯ D i Nd ¯ S i 4 π 4 π S 1 S 2 ✫ ✪

  20. ✬ ✩ AREA OF THE HORIZONS Relative change of the irreducible mass M ir 21*17*16 33*21*20 1e-03 1e-04 0.1 0.2 0.05 0.075 0.125 0.15 0.175 Orbital velocity Ω M ir � � A 1 A 2 M ir = 16 π + 16 π ✫ ✪

  21. ✬ ✩ LAPSE IN THE ORBITAL PLANE ISCO configuration ✫ ✪

  22. ✬ ✩ CONFORMAL FACTOR IN THE ORBITAL PLANE ISCO configuration ✫ ✪

  23. ✬ ✩ K XY IN THE ORBITAL PLANE ISCO configuration ✫ ✪

  24. ✬ ✩ SEQUENCE : VARIATION OF M ADM Comparison Numerical results <-> 3-PN EOB Total energy along a sequence 0,995 Grandclement et al. 2001, 33x21x20 Grandclement et al. 2001, 21x17x16 EOB 3-PN a4=4.67 corot, Damour et al. 2001 EOB 3-PN a4=4.67 irrot, Damour et al. 2000 0,99 Cook 1994, Pfeiffer et al. 2000, irrot M ADM / M ir 0,985 0,98 0 0,05 0,1 0,15 Ω M ir ✫ ✪

  25. ✬ ✩ SEQUENCE : VARIATION OF J Comparison Numerical results <-> 3-PN EOB Total angular momentum along a sequence 1 Grandclement et al. 2001, 33x21x20 Grandclement et al. 2001, 21x17x16 EOB 3-PN a4=4.67 corot, Damour et al. 2001 EOB 3-PN a4=4.67 irrot, Damour et al. 2000 Cook 1994, Pfeiffer et al. 2000, irrot 0,9 2 J / M ir 0,8 0 0,05 0,1 0,15 Ω M ir ✫ ✪

  26. ✬ ✩ POSITION OF THE ISCO 33*21*20 21*17*16 3−PN, corotating, ω s =0 (Damour et al. 2001) Binding energy (M−M ir ) / M ir 3PN, S=0, ω s =−9 (Damour et al. 2000) −0.015 Conformal imaging S=0 (Pfeiffer et al. 2000) Conformal imaging S=0.08 (Pfeiffer et al. 2000) Conformal imaging S=0.17 (Pfeiffer et al. 2000) −0.02 Puncture S=0 (Baumgarte 2000) −0.025 −0.03 0.05 0.1 0.15 0.2 0.25 0.3 Orbital velocity Ω M ir ✫ ✪

  27. ✬ ✩ PLAUSIBLE EXPLANATION Main difference with IVP : extrinsic curvature tensor IVP HKV choice given by the shift vector 3 1 Ψ 4 K ij = 2 N ( Lβ ) ij Ψ 2 K ij = � P i n j + P j n i − ( f ij − n i n j ) P k n k � 2 r 2 Indications that IVP does not produce real circular orbits : • Plunge even for pre-ISCO initial conditions = ⇒ the real ISCO is further away . • One must impose 0 . 55Ω to maintain the black holes in the corotating frame = ⇒ Ω is to big . ✫ ✪

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend