bilinear systems with two supports koszul resultant
play

Bilinear systems with two supports: Koszul resultant matrices, - PowerPoint PPT Presentation

Bilinear systems with two supports: Koszul resultant matrices, eigenvalues, and eigenvectors July 17, 2018 as R. Bender 1 , Jean-Charles Faug` ere 1 , Mat Angelos Mantzaflaris 2 & Elias Tsigaridas 1 1 Sorbonne Universit e, CNRS , INRIA


  1. Bilinear systems with two supports: Koszul resultant matrices, eigenvalues, and eigenvectors July 17, 2018 ıas R. Bender 1 , Jean-Charles Faug` ere 1 , Mat´ Angelos Mantzaflaris 2 & Elias Tsigaridas 1 1 Sorbonne Universit´ e, CNRS , INRIA , Laboratoire d’Informatique de Paris 6, LIP6 , ´ Equipe PolSys , 4 place Jussieu, F-75005, Paris, France 2 Johann Radon Institute for Computational and Applied Mathematics (RICAM), Austrian Academy of Sciences, Linz, Austria

  2. Solving 2-bilinear systems Objective Solve (symbolically) square mixed sparse bilinear systems where f 1 , . . . , f r ∈ K [ X , Y ], bilinear in the blocks X and Y , and f r +1 , . . . , f n ∈ K [ X , Z ], bilinear in the blocks X and Z . Take into the account the sparseness Polynomial time wrt the number of solutions Results Koszul-like determinantal formula for the resultant Extension of the Eigenvalue criteria Extension of the Eigenvector criteria 1/13

  3. Overview α solution of Square 2-bilinear the system system ( f 1 , . . . , f n ) ( f 1 , . . . , f n )

  4. Overview α solution of Square 2-bilinear the system system ( f 1 , . . . , f n ) ( f 1 , . . . , f n ) Add f 0 Resultant of ( f 0 , f 1 , . . . , f n )

  5. Overview α solution of Square 2-bilinear the system system ( f 1 , . . . , f n ) ( f 1 , . . . , f n ) Add f 0 Resultant of ( f 0 , f 1 , . . . , f n ) Weyman complex Determinantal formula

  6. Overview α solution of Square 2-bilinear the system system ( f 1 , . . . , f n ) ( f 1 , . . . , f n ) Add f 0 Resultant of ( f 0 , f 1 , . . . , f n ) Weyman complex f 0 ( α ) eigenvalue Determinantal of � formula M 2 , 2 Schur complement � � � M 1 , 1 M 1 , 2 � M 1 , 1 M 1 , 2 → � M 2 , 1 M 2 , 2 0 M 2 , 2

  7. Overview α solution of Square 2-bilinear the system system ( f 1 , . . . , f n ) ( f 1 , . . . , f n ) Add f 0 Resultant of ( f 0 , f 1 , . . . , f n ) Weyman complex f 0 ( α ) eigenvalue Coordinates of α from Determinantal eigenvector of � of � M 2 , 2 formula M 2 , 2 Schur complement � � � M 1 , 1 M 1 , 2 � M 1 , 1 M 1 , 2 → � M 2 , 1 M 2 , 2 0 M 2 , 2 2/13

  8. Overview α solution of Square 2-bilinear the system system ( f 1 , . . . , f n ) ( f 1 , . . . , f n ) Add f 0 Resultant of ( f 0 , f 1 , . . . , f n ) Weyman complex Determinantal formula 2/13

  9. Determinantal formulas and Weyman complex Approach Add a trilinear f 0 ∈ K [ X , Y , Z ] → Sparse resultant of ( f 0 , f 1 , . . . , f n ). The resultant of ( f 0 , f 1 , . . . , f n ) vanishes ⇐ ⇒ the system has a solution over P n x × P n y × P n z . 3/13

  10. Determinantal formulas and Weyman complex Approach Add a trilinear f 0 ∈ K [ X , Y , Z ] → Sparse resultant of ( f 0 , f 1 , . . . , f n ). The resultant of ( f 0 , f 1 , . . . , f n ) vanishes ⇐ ⇒ the system has a solution over P n x × P n y × P n z . Determinantal formula → Resultant = determinant of a matrix. 3/13

  11. Determinantal formulas and Weyman complex Approach Add a trilinear f 0 ∈ K [ X , Y , Z ] → Sparse resultant of ( f 0 , f 1 , . . . , f n ). The resultant of ( f 0 , f 1 , . . . , f n ) vanishes ⇐ ⇒ the system has a solution over P n x × P n y × P n z . Determinantal formula → Resultant = determinant of a matrix. Several works in this direction: (Non-exhaustive!) [Sturmfels, Zelevinsky, 1994], [Canny, Emiris, 1995] [Kapur, Saxena, 1997], [Chtcherba, Kapur, 2000], [D´Andrea, Dickenstein, 2001] 3/13

  12. Determinantal formulas and Weyman complex Approach Add a trilinear f 0 ∈ K [ X , Y , Z ] → Sparse resultant of ( f 0 , f 1 , . . . , f n ). The resultant of ( f 0 , f 1 , . . . , f n ) vanishes ⇐ ⇒ the system has a solution over P n x × P n y × P n z . Determinantal formula → Resultant = determinant of a matrix. Several works in this direction: (Non-exhaustive!) [Sturmfels, Zelevinsky, 1994], [Canny, Emiris, 1995] [Kapur, Saxena, 1997], [Chtcherba, Kapur, 2000], [D´Andrea, Dickenstein, 2001] [Weyman, Zelevinsky, 1994] → determinantal formulas for unmixed multihomogeneous systems using Weyman complexes . [Dickenstein, Emiris, 2003], [Emiris, Mantzaflaris, 2012],[Emiris, Mantzaflaris, Tsigaridas, 2016], [Bus´ e, Mantzaflaris, Tsigaridas, 2017] 3/13

  13. Determinantal formulas and Weyman complex Approach Add a trilinear f 0 ∈ K [ X , Y , Z ] → Sparse resultant of ( f 0 , f 1 , . . . , f n ). Weyman complex → Complex associated to an overdetermined system, parameterized by a vector m . δ n +1 ( m ) δ 1 ( m ) δ 0 ( m ) K • ( m ) : 0 → K n +1 ( m ) → · · · → K 1 ( m ) → K 0 ( m ) → · · · → K − n ( m ) → 0 − − − − − − − − − − − Determinant of K • ( m ) = 0 ⇐ ⇒ the system has a solution → Resultant of the system. 3/13

  14. Determinantal formulas and Weyman complex Approach Add a trilinear f 0 ∈ K [ X , Y , Z ] → Sparse resultant of ( f 0 , f 1 , . . . , f n ). Weyman complex → Complex associated to an overdetermined system, parameterized by a vector m . δ n +1 ( m ) δ 1 ( m ) δ 0 ( m ) K • ( m ) : 0 → K n +1 ( m ) → · · · → K 1 ( m ) → K 0 ( m ) → · · · → K − n ( m ) → 0 − − − − − − − − − − − Determinant of K • ( m ) = 0 ⇐ ⇒ the system has a solution → Resultant of the system. If ( ∀ i �∈ { 0 , 1 } ) K i ( m ) = 0, Determinant of K • ( m ) = Determinant of δ 1 ( m ) → Determinantal formula. δ 1 ( m ) K • ( m ) : 0 → · · · → 0 → K 1 ( m ) − − − → K 0 ( m ) → 0 → · · · → 0 3/13

  15. Determinantal formula for the Resultant Results Weyman complex → determinantal formula for the resultant of square 2-bilinear system + trilinear polynomial. Koszul-like matrix: The elements in the matrix are ± the coefficients of the polynomials. Generalization of Sylvester-like matrices, i.e. ( g 0 , . . . , g n ) �→ � n i =0 g i f i These matrices were used in previous works, [Weyman & Zelevinsky, 1994], [Dickenstein & Emiris, 2003], [Emiris & Mantzaflaris, 2012], [Emiris, Mantzaflaris & Tsigaridas, 2016], [Bus´ e, Mantzaflaris & Tsigaridas, 2017] Number of solutions Size of the Koszul-like matrix over P n x × P n y × P n z � r �� n − r � � r �� n − r � r · ( n − r ) − n y · n z + n +1 ( n x + 1) ( r − n y +1)( n − r − n z +1) n y n z n y n z 4/13

  16. Solving 2-bilinear systems Example       � f 1 := 7 x 0 y 0 + − 8 x 0 y 1 + − 1 x 1 y 0 + 2 x 1 y 1 ∈ K [ X , Y ]   f 2 := − 5 x 0 y 0 + 7 x 0 y 1 + − 1 x 1 y 0 + − 1 x 1 y 1    f 3 := − 6 x 0 z 0 + 9 x 0 z 1 + − 1 x 1 z 0 + − 2 x 1 z 1 ∈ K [ X , Z ] 5/13

  17. Solving 2-bilinear systems Example �  f 0 := 3 x 0 y 0 z 0 + − 1 x 0 y 0 z 1 + − 4 x 0 y 1 z 0 + 2 x 0 y 1 z 1   ∈ K [ X , Y , Z ]   + 1 x 1 y 0 z 0 + 2 x 1 y 0 z 1 + 2 x 1 y 1 z 0 + − 2 x 1 y 1 z 1  � f 1 := 7 x 0 y 0 + − 8 x 0 y 1 + − 1 x 1 y 0 + 2 x 1 y 1 ∈ K [ X , Y ]   f 2 := − 5 x 0 y 0 + 7 x 0 y 1 + − 1 x 1 y 0 + − 1 x 1 y 1    f 3 := − 6 x 0 z 0 + 9 x 0 z 1 + − 1 x 1 z 0 + − 2 x 1 z 1 ∈ K [ X , Z ] 5/13

  18. Solving 2-bilinear systems Example �  f 0 := 3 x 0 y 0 z 0 + − 1 x 0 y 0 z 1 + − 4 x 0 y 1 z 0 + 2 x 0 y 1 z 1   ∈ K [ X , Y , Z ]   + 1 x 1 y 0 z 0 + 2 x 1 y 0 z 1 + 2 x 1 y 1 z 0 + − 2 x 1 y 1 z 1  � f 1 := 7 x 0 y 0 + − 8 x 0 y 1 + − 1 x 1 y 0 + 2 x 1 y 1 ∈ K [ X , Y ]   f 2 := − 5 x 0 y 0 + 7 x 0 y 1 + − 1 x 1 y 0 + − 1 x 1 y 1    f 3 := − 6 x 0 z 0 + 9 x 0 z 1 + − 1 x 1 z 0 + − 2 x 1 z 1 ∈ K [ X , Z ]   5 − 7 1 1   7 − 8 − 1 2     − 1 − 1 − 5 7     7 − 1 − 1 − 5     1 − 2 − 7 8 M =     8 − 2 1 − 7     2 9 − 2 − 2 − 1 2     2 − 2 9 − 2 2 − 1     1 − 6 − 1 2 3 − 4 − 4 2 − 6 − 1 1 3 5/13

  19. Overview α solution of Square 2-bilinear the system system ( f 1 , . . . , f n ) ( f 1 , . . . , f n ) Add f 0 Resultant of ( f 0 , f 1 , . . . , f n ) Weyman complex f 0 ( α ) eigenvalue Determinantal of � M 2 , 2 formula Schur complement � � � M 1 , 1 M 1 , 2 � M 1 , 1 M 1 , 2 → � M 2 , 1 M 2 , 2 0 M 2 , 2 6/13

  20. Solving 2-bilinear systems Eigenvalues & Eigenvectors Motivation From Sylvester-like matrices → multiplication map of f 0 over K [ X , Y , Z ] / � f 1 , . . . , f n � . Solve using eigenvalues and eigenvectors. We do not compute the resultant, we use the structure of the matrix. But we do not have a Sylvester-like matrix... 7/13

  21. Solving 2-bilinear systems Eigenvalues - Main theorem Let M be a matrix such that Res ( f 0 , f 1 , . . . , f n ) divides det ( M ). Consider a m monomial of f 0 such that � � M 1 , 1 M 1 , 2 We can reorder M as , M 2 , 1 M 2 , 2 M 1 , 1 is square and invertible. The elements in diagonal of M 2 , 2 = coefficient of m . Then, for each α solutions of ( f 1 , . . . , f n ) s.t. m ( α ) � = 0, � � → f 0 M 2 , 2 − M 2 , 1 · M − 1 m ( α ) eigenvalue of 1 , 1 · M 1 , 2 (Schur complement) 8/13

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend