bilinear pseudodifferential operators of h ormander type
play

Bilinear pseudodifferential operators of H ormander type Arp ad - PowerPoint PPT Presentation

Bilinear pseudodifferential operators of H ormander type Arp ad B enyi Department of Mathematics Western Washington University Bellingham, WA 98226 arpad.benyi@wwu.edu February Fourier Talks 2012 Outline of the talk Linear


  1. Bilinear pseudodifferential operators of H¨ ormander type ´ Arp´ ad B´ enyi Department of Mathematics Western Washington University Bellingham, WA 98226 arpad.benyi@wwu.edu February Fourier Talks 2012

  2. Outline of the talk Linear ψ DOs Some classical boundedness results Bilinear ψ DOs Results and comparison to linear case 2

  3. Outline of the talk Linear ψ DOs Some classical boundedness results Bilinear ψ DOs Results and comparison to linear case 2

  4. Outline of the talk Linear ψ DOs Some classical boundedness results Bilinear ψ DOs Results and comparison to linear case 2

  5. Outline of the talk Linear ψ DOs Some classical boundedness results Bilinear ψ DOs Results and comparison to linear case 2

  6. Fourier analysis For a function f , two complementary representations: The function f ( x ) itself (spatial behavior) The Fourier transform � f ( ξ ) (frequency behavior) � R d f ( x ) e − ix · ξ dx � f ( ξ ) = � f ( ξ ) e ix · ξ d ξ f ( x ) = (2 π ) − d � R d 3

  7. Fourier analysis For a function f , two complementary representations: The function f ( x ) itself (spatial behavior) The Fourier transform � f ( ξ ) (frequency behavior) � R d f ( x ) e − ix · ξ dx � f ( ξ ) = � f ( ξ ) e ix · ξ d ξ f ( x ) = (2 π ) − d � R d 3

  8. Linear multipliers The synthesis formula above is: � f ( ξ ) e ix · ξ d ξ R d (2 π ) − d � Id ( f )( x ) = � �� � m Translation invariant extension: � f ( ξ ) e ix · ξ d ξ R d m ( ξ ) � T m ( f )( x ) = Theorem (Mihlin, 1956) If | ∂ β m ( ξ ) | � (1 + | ξ | ) −| β | , then T σ : L p → L p , 1 < p < ∞ . 4

  9. Linear multipliers The synthesis formula above is: � f ( ξ ) e ix · ξ d ξ R d (2 π ) − d � Id ( f )( x ) = � �� � m Translation invariant extension: � f ( ξ ) e ix · ξ d ξ R d m ( ξ ) � T m ( f )( x ) = Theorem (Mihlin, 1956) If | ∂ β m ( ξ ) | � (1 + | ξ | ) −| β | , then T σ : L p → L p , 1 < p < ∞ . 4

  10. Linear pseudodifferential operators ( ψ DOs ) Non-translation invariant extension: � f ( ξ ) e ix · ξ d ξ R d σ ( x , ξ ) � T σ ( f )( x ) = Theorem (Ching, 1972; a question of Nirenberg) ξ σ ( x , ξ ) | � (1 + | ξ | ) −| β | , then T σ : L 2 �→ L 2 . If | ∂ β Boundeness requires also some a priori smoothness in x ! 5

  11. Linear pseudodifferential operators ( ψ DOs ) Non-translation invariant extension: � f ( ξ ) e ix · ξ d ξ R d σ ( x , ξ ) � T σ ( f )( x ) = Theorem (Ching, 1972; a question of Nirenberg) ξ σ ( x , ξ ) | � (1 + | ξ | ) −| β | , then T σ : L 2 �→ L 2 . If | ∂ β Boundeness requires also some a priori smoothness in x ! 5

  12. Linear pseudodifferential operators ( ψ DOs ) Non-translation invariant extension: � f ( ξ ) e ix · ξ d ξ R d σ ( x , ξ ) � T σ ( f )( x ) = Theorem (Ching, 1972; a question of Nirenberg) ξ σ ( x , ξ ) | � (1 + | ξ | ) −| β | , then T σ : L 2 �→ L 2 . If | ∂ β Boundeness requires also some a priori smoothness in x ! 5

  13. (Linear) H¨ ormander classes of symbols Let m ∈ R and 0 ≤ ρ, δ ≤ 1. A symbol σ ( x , ξ ) belongs to the ormander class S m H¨ ρ,δ if | ∂ α x ∂ β ξ σ ( x , ξ ) | � (1 + | ξ | ) m + δ | α |− ρ | β | x ∂ β In particular: σ ∈ S 0 1 , 0 ⇔ | ∂ α ξ σ ( x , ξ ) | � (1 + | ξ | ) −| β | . Theorem (Coifman-Meyer, ’70s) 1 , 0 , then T σ : L p → L p , 1 < p < ∞ . If σ ∈ S 0 6

  14. (Linear) H¨ ormander classes of symbols Let m ∈ R and 0 ≤ ρ, δ ≤ 1. A symbol σ ( x , ξ ) belongs to the ormander class S m H¨ ρ,δ if | ∂ α x ∂ β ξ σ ( x , ξ ) | � (1 + | ξ | ) m + δ | α |− ρ | β | x ∂ β In particular: σ ∈ S 0 1 , 0 ⇔ | ∂ α ξ σ ( x , ξ ) | � (1 + | ξ | ) −| β | . Theorem (Coifman-Meyer, ’70s) 1 , 0 , then T σ : L p → L p , 1 < p < ∞ . If σ ∈ S 0 6

  15. (Linear) H¨ ormander classes of symbols Let m ∈ R and 0 ≤ ρ, δ ≤ 1. A symbol σ ( x , ξ ) belongs to the ormander class S m H¨ ρ,δ if | ∂ α x ∂ β ξ σ ( x , ξ ) | � (1 + | ξ | ) m + δ | α |− ρ | β | x ∂ β In particular: σ ∈ S 0 1 , 0 ⇔ | ∂ α ξ σ ( x , ξ ) | � (1 + | ξ | ) −| β | . Theorem (Coifman-Meyer, ’70s) 1 , 0 , then T σ : L p → L p , 1 < p < ∞ . If σ ∈ S 0 6

  16. Connection to Calder´ on-Zygmund theory Note that: S 0 1 , 0 ⊂ S 0 1 ,δ ⊂ S 0 1 , 1 . Theorem The class S 0 1 , 1 is the largest one such that T σ has a Calder´ on-Zygmund kernel. That is, � T σ ( f )( x ) = K ( x , y ) f ( y ) dy , where K ( x , y ) satisfies | ∂ α x ∂ β y K ( x , y ) | � | x − y | − n −| α |−| β | . In particular, T σ : L p → L p ⇔ T σ : L 2 → L 2 . 1 ,δ : L 2 → L 2 , 0 ≤ δ < 1 but S 0 1 , 1 : L 2 �→ L 2 S 0 7

  17. Connection to Calder´ on-Zygmund theory Note that: S 0 1 , 0 ⊂ S 0 1 ,δ ⊂ S 0 1 , 1 . Theorem The class S 0 1 , 1 is the largest one such that T σ has a Calder´ on-Zygmund kernel. That is, � T σ ( f )( x ) = K ( x , y ) f ( y ) dy , where K ( x , y ) satisfies | ∂ α x ∂ β y K ( x , y ) | � | x − y | − n −| α |−| β | . In particular, T σ : L p → L p ⇔ T σ : L 2 → L 2 . 1 ,δ : L 2 → L 2 , 0 ≤ δ < 1 but S 0 1 , 1 : L 2 �→ L 2 S 0 7

  18. Connection to Calder´ on-Zygmund theory Note that: S 0 1 , 0 ⊂ S 0 1 ,δ ⊂ S 0 1 , 1 . Theorem The class S 0 1 , 1 is the largest one such that T σ has a Calder´ on-Zygmund kernel. That is, � T σ ( f )( x ) = K ( x , y ) f ( y ) dy , where K ( x , y ) satisfies | ∂ α x ∂ β y K ( x , y ) | � | x − y | − n −| α |−| β | . In particular, T σ : L p → L p ⇔ T σ : L 2 → L 2 . 1 ,δ : L 2 → L 2 , 0 ≤ δ < 1 but S 0 1 , 1 : L 2 �→ L 2 S 0 7

  19. Connection to Calder´ on-Zygmund theory Note that: S 0 1 , 0 ⊂ S 0 1 ,δ ⊂ S 0 1 , 1 . Theorem The class S 0 1 , 1 is the largest one such that T σ has a Calder´ on-Zygmund kernel. That is, � T σ ( f )( x ) = K ( x , y ) f ( y ) dy , where K ( x , y ) satisfies | ∂ α x ∂ β y K ( x , y ) | � | x − y | − n −| α |−| β | . In particular, T σ : L p → L p ⇔ T σ : L 2 → L 2 . 1 ,δ : L 2 → L 2 , 0 ≤ δ < 1 but S 0 1 , 1 : L 2 �→ L 2 S 0 7

  20. Some examples 1. Let a k ∈ C ∞ and | ∂ α x a k ( x ) | � 1. Define the PDO � a k ( x ) ∂ k T = x . | k |≤ m Then: T = T σ , where � a k ( x )( i ξ ) k . σ ( x , ξ ) = | k |≤ m We have: σ ∈ S m 1 , 0 . x a k ( x ) | � 2 k | α | and ψ ( ξ ) supported in 1 / 2 ≤ | ξ | ≤ 2. 2. Let | ∂ α Define ∞ � a k ( x ) ψ (2 − k ξ ) . σ ( x , ξ ) = k =1 We have: σ ∈ S 0 1 , 1 . 8

  21. Some examples 1. Let a k ∈ C ∞ and | ∂ α x a k ( x ) | � 1. Define the PDO � a k ( x ) ∂ k T = x . | k |≤ m Then: T = T σ , where � a k ( x )( i ξ ) k . σ ( x , ξ ) = | k |≤ m We have: σ ∈ S m 1 , 0 . x a k ( x ) | � 2 k | α | and ψ ( ξ ) supported in 1 / 2 ≤ | ξ | ≤ 2. 2. Let | ∂ α Define ∞ � a k ( x ) ψ (2 − k ξ ) . σ ( x , ξ ) = k =1 We have: σ ∈ S 0 1 , 1 . 8

  22. 3. The heat operator n � ∂ 2 L = ∂ t − x 2 k k =1 has an approximate inverse T = T σ ( LT ∼ I ) and σ ∈ S − 1 1 / 2 , 0 . 9

  23. The classes S 0 ρ,ρ Motivation Kumano-go, Nagase-Shinkai (’70s): applications to parabolic and semi-elliptic operators Theorem (Calder´ on-Vaillancourt, 1970) 0 , 0 , then T σ : L 2 → L 2 (but not on L p , p � = 2 , in general). If σ ∈ S 0 Recall that x ∂ β σ ∈ S 0 0 , 0 ⇔ | ∂ α ξ σ ( x , ξ ) | � 1 . Theorem (Cordes, 1975) ρ,ρ , 0 ≤ ρ < 1 , then T σ : L 2 → L 2 . If σ ∈ S 0 10

  24. The classes S 0 ρ,ρ Motivation Kumano-go, Nagase-Shinkai (’70s): applications to parabolic and semi-elliptic operators Theorem (Calder´ on-Vaillancourt, 1970) 0 , 0 , then T σ : L 2 → L 2 (but not on L p , p � = 2 , in general). If σ ∈ S 0 Recall that x ∂ β σ ∈ S 0 0 , 0 ⇔ | ∂ α ξ σ ( x , ξ ) | � 1 . Theorem (Cordes, 1975) ρ,ρ , 0 ≤ ρ < 1 , then T σ : L 2 → L 2 . If σ ∈ S 0 10

  25. The classes S m ρ, 0 Theorem (Fefferman-Stein, 1972) ρ, 0 , 0 < ρ < 1 , − (1 − ρ ) n / 2 < m ≤ 0 , then T σ : L 2 → L 2 . If σ ∈ S m Theorem (Fefferman, 1973) , 0 < ρ ≤ 1 , then T σ : L ∞ → BMO. If σ ∈ S − (1 − ρ ) n / 2 ρ, 0 Fefferman’s result uses the fact (due to H¨ ormader, ’70s) that ρ,δ : L 2 → L 2 , 0 < δ < ρ ≤ 1 . S 0 11

  26. The classes S m ρ, 0 Theorem (Fefferman-Stein, 1972) ρ, 0 , 0 < ρ < 1 , − (1 − ρ ) n / 2 < m ≤ 0 , then T σ : L 2 → L 2 . If σ ∈ S m Theorem (Fefferman, 1973) , 0 < ρ ≤ 1 , then T σ : L ∞ → BMO. If σ ∈ S − (1 − ρ ) n / 2 ρ, 0 Fefferman’s result uses the fact (due to H¨ ormader, ’70s) that ρ,δ : L 2 → L 2 , 0 < δ < ρ ≤ 1 . S 0 11

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend