bijective composite mean value mappings
play

Bijective Composite Mean Value Mappings Kai Hormann Universit - PowerPoint PPT Presentation

Bijective Composite Mean Value Mappings Kai Hormann Universit della Svizzera italiana, Lugano joint work with Michael S. Floater & Teseo Schneider Introduction special bivariate interpolation problem find mapping f between two


  1. Bijective Composite Mean Value Mappings Kai Hormann Università della Svizzera italiana, Lugano joint work with Michael S. Floater & Teseo Schneider

  2. Introduction  special bivariate interpolation problem  find mapping f between two simple polygons  bijective  linear along edges 1/36 MAIA 2013 – Erice – 30 September 2013

  3. Motivation  image warping original image mask warped image 2/36 MAIA 2013 – Erice – 30 September 2013

  4. Barycentric coordinates  functions with  partition of unity  linear reproduction  Lagrange property  interpolation of data f i given at v i 3/36 MAIA 2013 – Erice – 30 September 2013

  5. Barycentric coordinates  special case n = 3  general case  homogeneous weight functions with  barycentric coordinates 4/36 MAIA 2013 – Erice – 30 September 2013

  6. Examples  Wachspress (WP) coordinates  mean value (MV) coordinates  discrete harmonic (DH) coordinates 5/36 MAIA 2013 – Erice – 30 September 2013

  7. Barycentric mappings source polygon target polygon 6/36 MAIA 2013 – Erice – 30 September 2013

  8. Wachspress mappings  based on WP coordinates [Wachspress 1975]  bijective for convex polygons [Floater & Kosinka 2010] 7/36 MAIA 2013 – Erice – 30 September 2013

  9. Wachspress mappings  based on WP coordinates [Wachspress 1975]  bijective for convex polygons [Floater & Kosinka 2010]  not bijective for non-convex target  not well-defined for non-convex source 8/36 MAIA 2013 – Erice – 30 September 2013

  10. Mean value mappings  based on MV coordinates [Floater 2003]  well-defined for non-convex source  not bijective 9/36 MAIA 2013 – Erice – 30 September 2013

  11. Mean value mappings  based on MV coordinates [Floater 2003]  well-defined for non-convex source  not bijective, even for convex polygons 10/36 MAIA 2013 – Erice – 30 September 2013

  12. Barycentric mappings WP MV   convex → convex   convex → non-convex   non-convex → convex   non-convex → non-convex  general barycentric mappings [Jacobson 2012]  not bijective for non-convex target polygon 11/36 MAIA 2013 – Erice – 30 September 2013

  13. Composite barycentric mappings 12/36 MAIA 2013 – Erice – 30 September 2013

  14. Sufficient condition  is bijective, if [Meisters & Olech 1963]  and without self-intersection  f bijective on the boundary  13/36 MAIA 2013 – Erice – 30 September 2013

  15. Perturbation bounds  move one to  f bijective, if with  move all to  f bijective, if with 14/36 MAIA 2013 – Erice – 30 September 2013

  16. Composite barycentric mappings  continuous vertex paths  intermediate polygons  barycentric mappings 15/36 MAIA 2013 – Erice – 30 September 2013

  17. Composite barycentric mappings  partition of [0,1]  composite barycentric mapping  f τ bijective, if max displacement with max gradient 16/36 MAIA 2013 – Erice – 30 September 2013

  18. Composite barycentric mappings 17/36 MAIA 2013 – Erice – 30 September 2013

  19. Composite mean value mappings  use mean value coordinates to define mappings f k  well-defined, as long as without self-intersections  bounded for  if is convex [Rand et al. 2012]  if is non-convex ⇒ future work  constant M * is finite  f τ bijective for uniform steps  continuous vertex paths ϕ i  m sufficiently large 18/36 MAIA 2013 – Erice – 30 September 2013

  20. Vertex paths  by linearly interpolating [Sederberg at al. 1993]  edges lengths  signed turning angles  barycentre  orientation of one edge 19/36 MAIA 2013 – Erice – 30 September 2013

  21. Adaptive binary partition checkInterval ( 0 , 1 ) J min = computeJmin ( , ) if J min ≤ 0 then c = ( + ) /2 τ = τ ∪ c checkInterval ( , c ) checkInterval ( c , ) end end τ = { 0, 1 } 20/36 MAIA 2013 – Erice – 30 September 2013

  22. Adaptive binary partition checkInterval ( 0 , 1 ) J min = computeJmin ( 0 , 1 ) if J min ≤ 0 then c = ( + ) /2 τ = τ ∪ c checkInterval ( , c ) checkInterval ( c , ) end end τ = { 0, 1 } 21/36 MAIA 2013 – Erice – 30 September 2013

  23. Adaptive binary partition checkInterval ( 0 , 1 ) J min = computeJmin ( 0 , 1 ) if J min ≤ 0 then c = ( 0 + 1 ) /2 τ = τ ∪ c checkInterval ( 0 , c ) checkInterval ( c , 1 ) end end τ = { 0, 0.5, 1 } 22/36 MAIA 2013 – Erice – 30 September 2013

  24. Adaptive binary partition checkInterval ( 0 , 0.5 ) J min = computeJmin ( 0 , 0.5 ) if J min ≤ 0 then c = ( + ) /2 τ = τ ∪ c checkInterval ( , c ) checkInterval ( c , ) end end τ = { 0, 0.5, 1 } 23/36 MAIA 2013 – Erice – 30 September 2013

  25. Adaptive binary partition checkInterval ( 0 , 0.5 ) J min = computeJmin ( 0 , 0.5 ) if J min ≤ 0 then c = ( + ) /2 τ = τ ∪ c checkInterval ( , c ) checkInterval ( c , ) end end τ = { 0, 0.5, 1 } 24/36 MAIA 2013 – Erice – 30 September 2013

  26. Adaptive binary partition checkInterval ( 0.5 , 1 ) J min = computeJmin ( 0.5 , 1 ) if J min ≤ 0 then c = ( + ) /2 τ = τ ∪ c checkInterval ( , c ) checkInterval ( c , ) end end τ = { 0, 0.5, 1 } 25/36 MAIA 2013 – Erice – 30 September 2013

  27. Adaptive binary partition checkInterval ( 0.5 , 1 ) J min = computeJmin ( 0.5 , 1 ) if J min ≤ 0 then c = ( 0.5 + 1 ) /2 τ = τ ∪ c checkInterval ( 0.5 , c ) checkInterval ( c , 1 ) end end τ = { 0, 0.5, 0.75, 1 } 26/36 MAIA 2013 – Erice – 30 September 2013

  28. Adaptive binary partition checkInterval ( 0.5 , 1 ) J min = computeJmin ( 0.5 , 1 ) if J min ≤ 0 then c = ( 0.5 + 1 ) /2 τ = τ ∪ c checkInterval ( 0.5 , c ) checkInterval ( c , 1 ) end end τ = { 0, 0.5, 0.75, ..., 1 } 27/36 MAIA 2013 – Erice – 30 September 2013

  29. Composite barycentric mapping 28/36 MAIA 2013 – Erice – 30 September 2013

  30. Image warping comparison mean value 29/36 MAIA 2013 – Erice – 30 September 2013

  31. Image warping comparison composite mean value 30/36 MAIA 2013 – Erice – 30 September 2013

  32. Infinite barycentric mappings 31/36 MAIA 2013 – Erice – 30 September 2013

  33. Infinite barycentric mappings 32/36 MAIA 2013 – Erice – 30 September 2013

  34. Infinite barycentric mappings 33/36 MAIA 2013 – Erice – 30 September 2013

  35. Infinite barycentric mappings 1.E+01 10 1.E+00 0 error 10 -1 1.E-01 10 -2 1.E-02 100 1000 m 34/36 MAIA 2013 – Erice – 30 September 2013

  36. Infinite barycentric mappings  infinite barycentric mapping: 35/36 MAIA 2013 – Erice – 30 September 2013

  37. Conclusion  construction of bijective barycentric mappings  composition of intermediate mappings  theoretical bounds on the displacement  real-time composite mean value mappings  construction of the adaptive binary partition  real-time GPU implementation  infinite composite mappings  natural inverse  empiric result of convergence 36/36 MAIA 2013 – Erice – 30 September 2013

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend