best net cc extension of bcc search to gw interferometer
play

Best NET-CC: Extension of BCC search to GW interferometer networks - PowerPoint PPT Presentation

Best NET-CC: Extension of BCC search to GW interferometer networks Archana Pai Albert Einstein Institute, Potsdam with ric Chassande-Mottin AstroParticule et Cosmologie, Paris CNRS, Observatoire de la Cte de Azur, Nice (20th Dec. 2006,


  1. Best NET-CC: Extension of BCC search to GW interferometer networks Archana Pai Albert Einstein Institute, Potsdam with Éric Chassande-Mottin AstroParticule et Cosmologie, Paris CNRS, Observatoire de la Côte de Azur, Nice (20th Dec. 2006, GWDAW-11, AEI Berlin)

  2. Talk Outline • Detection problem of arbitrary chirp with known phase : Max LR methods ⇒ Linear Least SQuare Problem can be ill-posed! = Consequence for binary inspiral detection? • Formulate network max LLR with Synthetic Streams ⇒ Implementation of Best Net-CC =

  3. Talk Outline • Detection problem of arbitrary chirp with known phase : Max LR methods ⇒ Linear Least SQuare Problem can be ill-posed! = Consequence for binary inspiral detection? • Formulate network max LLR with Synthetic Streams ⇒ Implementation of Best Net-CC = Best CC (BCC) – Time frequency based detection of unmodelled chirps Look for TF track MLR = Longest Path in TF

  4. Signal Model : Smooth chirp GW polarisations: h + = A (1+cos 2 ǫ ) cos( ϕ − ϕ 0 ) 2 h × = A cos ǫ sin( ϕ − ϕ 0 ) A: amplitude, ϕ 0 : initial phase, ϕ : arbitrary phase

  5. Signal Model : Smooth chirp GW polarisations: h + = A (1+cos 2 ǫ ) cos( ϕ − ϕ 0 ) 2 h × = A cos ǫ sin( ϕ − ϕ 0 ) A: amplitude, ϕ 0 : initial phase, ϕ : arbitrary phase Network Signal, s ∈ ℜ Nd   p 1       p 2 � � � � s = 1   Φ ∗ Φ   D D ∗ ⊗ ≡ Π P     2   p 3   � �� � � �� �   ∅ D p 4 � �� � P

  6. Signal Model: Understand Π What is SVD of Π = U Π Σ Π V H Π ? SVD of ⊗ is ⊗ of SVD Φ and Φ ∗ are orthogonal SVD(Π) = SVD( D ) ⊗ SVD(Φ) � �� � � �� � Σ Π = diag ( σ 1 ,σ 2 ) I 2

  7. Signal Model: Understand Π What is SVD of Π = U Π Σ Π V H Π ? SVD of ⊗ is ⊗ of SVD Φ and Φ ∗ are orthogonal SVD(Π) = SVD( D ) ⊗ SVD(Φ) � �� � � �� � Σ Π = diag ( σ 1 ,σ 2 ) I 2 Condition Number cond(Π) = σ 1 /σ 2 σ 1 > σ 2 σ 2 can be very small = ⇒ F + and F × are collinear. [Klimenko et. al PRD 2005, Rakhmanov CQG 2006]

  8. Detector Networks: cond (Π) − 1 = σ 2 /σ 1 < 0 . 1

  9. Maximum of Network LLR • Maximize Network Likelihood Ratio wrt P : Λ = −� x − Π P � 2 + � x � 2 Solve Linear LSQ:- Pseudo-inverse of Π i.e. ˆ P = V Π Σ − 1 Π U H Π x

  10. Maximum of Network LLR • Maximize Network Likelihood Ratio wrt P : Λ = −� x − Π P � 2 + � x � 2 Solve Linear LSQ:- Pseudo-inverse of Π i.e. ˆ P = V Π Σ − 1 Π U H Π x Π x � 2 = � ( U H Λ(ˆ ∅ ) x � 2 • Network MLR: P ) = � U H D ⊗ U H � � D X T U ∅ U H X = x 1 . . . x d N × d � �� � Project data on to U ∅ first and then combine with weights [Pai, Dhurandhar, Bose, PRD 2001]

  11. Maximum of Network LLR • Maximize Network Likelihood Ratio wrt P : Λ = −� x − Π P � 2 + � x � 2 Solve Linear LSQ:- Pseudo-inverse of Π i.e. ˆ P = V Π Σ − 1 Π U H Π x Π x � 2 = � ( U H Λ(ˆ ∅ ) x � 2 • Network MLR: P ) = � U H D ⊗ U H � � U H D X T � �� � U ∅ X = x 1 . . . x d N × d Project data on to U D and then Matched filtering

  12. Synthetic Streams and Null Streams � � Π x � 2 = � ( U H Λ(ˆ ∅ ) x � 2 Network MLR: P ) = � U H D ⊗ U H U D = d 1 d 2 � � Φ ∗ Φ U H D X T � �� � U ∅ U ∅ = (a) Project data on to U D = construct synthetic streams (b) Matched filtering of synthetic streams

  13. Synthetic Streams and Null Streams � � Π x � 2 = � ( U H Λ(ˆ ∅ ) x � 2 Network MLR: P ) = � U H D ⊗ U H U D = d 1 d 2 � � Φ ∗ Φ U H D X T � �� � U ∅ U ∅ = (a) Project data on to U D = construct synthetic streams (b) Matched filtering of synthetic streams • 2 non-zero singular values ⇒ 2 synthetic streams: Y 1 = Xd 1 and Y 2 = Xd 2 P ) = | Φ H Y 1 | 2 + | Φ H Y 2 | 2 Λ = Λ(ˆ ˆ N

  14. Synthetic Streams and Null Streams � � Π x � 2 = � ( U H Λ(ˆ ∅ ) x � 2 Network MLR: P ) = � U H D ⊗ U H U D = d 1 d 2 � � Φ ∗ Φ U H D X T � �� � U ∅ U ∅ = (a) Project data on to U D = construct synthetic streams (b) Matched filtering of synthetic streams • 2 non-zero singular values ⇒ 2 synthetic streams: Y 1 = Xd 1 and Y 2 = Xd 2 P ) = | Φ H Y 1 | 2 + | Φ H Y 2 | 2 Λ = Λ(ˆ ˆ N • ( d − 2) zero singular values ⇒ ( d − 2) orthogonal null streams span null space Null Stream Def: Xd j = 0 , d ≥ j > 2 (signal only)

  15. Synthetic Streams and Null Streams � � Π x � 2 = � ( U H Λ(ˆ ∅ ) x � 2 Network MLR: P ) = � U H D ⊗ U H U D = d 1 d 2 � � Φ ∗ Φ U H D X T � �� � U ∅ U ∅ = (a) Project data on to U D = construct synthetic streams (b) Matched filtering of synthetic streams • 2 non-zero singular values ⇒ 2 synthetic streams: Y 1 = Xd 1 and Y 2 = Xd 2 P ) = | Φ H Y 1 | 2 + | Φ H Y 2 | 2 Λ = Λ(ˆ ˆ N • ( d − 2) zero singular values ⇒ ( d − 2) orthogonal null streams span null space Null Stream Def: Xd j = 0 , d ≥ j > 2 (signal only) 2 detectors: No null stream 3 detectors: 1 null stream d 3 = d 1 × d 2 = { ǫ ijk d 1 j d 2 k } [ Wen, Schutz, CQG, 2005]

  16. Synthetic Streams and Null Streams � � Π x � 2 = � ( U H Λ(ˆ ∅ ) x � 2 Network MLR: P ) = � U H D ⊗ U H U D = d 1 d 2 � � Φ ∗ Φ U H D X T � �� � U ∅ U ∅ = (a) Project data on to U D = construct synthetic streams (b) Matched filtering of synthetic streams • 2 non-zero singular values ⇒ 2 synthetic streams: Y 1 = Xd 1 and Y 2 = Xd 2 P ) = | Φ H Y 1 | 2 + | Φ H Y 2 | 2 Λ = Λ(ˆ ˆ N • ( d − 2) zero singular values ⇒ ( d − 2) orthogonal null streams span null space Null Stream Def: Xd j = 0 , d ≥ j > 2 (signal only) 2 detectors: No null stream 3 detectors: 1 null stream d 3 = d 1 × d 2 = { ǫ ijk d 1 j d 2 k } [ Wen, Schutz, CQG, 2005] In general, for d detectors, ( d − 2) null streams: d l i = ǫ ijk...n d 1 j d 2 k . . . d ( l − 1 ) n for d ≥ l > 2

  17. Treating Rank Defficiency Π might be ill-conditioned i.e. cond(Π) >> 1 ( σ 2 ∼ 0 ⇒ � − 1 diverges : Y 2 insensitive to GW) Ill posed LSQ ⇒ Needs treatment, regularisation

  18. Treating Rank Defficiency Π might be ill-conditioned i.e. cond(Π) >> 1 ( σ 2 ∼ 0 ⇒ � − 1 diverges : Y 2 insensitive to GW) Ill posed LSQ ⇒ Needs treatment, regularisation • Truncated SVD approach: Y 2 adds noise to the statistics, discard it. Λ t = | Φ H Y 1 | 2 ˆ N Truncation criterion cond(Π) > SNR

  19. Treating Rank Defficiency Π might be ill-conditioned i.e. cond(Π) >> 1 ( σ 2 ∼ 0 ⇒ � − 1 diverges : Y 2 insensitive to GW) Ill posed LSQ ⇒ Needs treatment, regularisation • Truncated SVD approach: Y 2 adds noise to the statistics, discard it. Λ t = | Φ H Y 1 | 2 ˆ N Truncation criterion cond(Π) > SNR • Tikhonov Regularisation: similar to [Rakhmanov CQG 2006] Regularise Λ == Add a quadratic regulator to Λ � � | Φ H Y 1 | 2 + | Φ H Y 2 | 2 Λ r = 1 ˆ N cond(Π) Larger the cond(Π) smaller is the contribution from Y 2

  20. Best Net-CC : Extension of BCC Signal phase Φ is unknown : maximising ˆ Λ over possible phases

  21. Best Net-CC : Extension of BCC Signal phase Φ is unknown : maximising ˆ Λ over possible phases Time-frequency (TF) mapping of ˆ Λ – TF map – Wigner-Ville transform [Chassande-mottin, Pai, IEEE SPL 2005] + Simplified template of smooth chirp – 1-dim ridge in WV i.e. δ ( t, f ( t )) == TF path integral on WV map [Chassande-mottin, Pai, PRD 2006]

  22. Best Net-CC : Extension of BCC Signal phase Φ is unknown : maximising ˆ Λ over possible phases Time-frequency (TF) mapping of ˆ Λ – TF map – Wigner-Ville transform [Chassande-mottin, Pai, IEEE SPL 2005] + Simplified template of smooth chirp – 1-dim ridge in WV i.e. δ ( t, f ( t )) == TF path integral on WV map [Chassande-mottin, Pai, PRD 2006] Λ = | Φ H Y 1 | 2 + | Φ H Y 2 | 2 = 2 � ˆ w Y ( t n , f ( t n )) w Y = w Y 1 + w Y 2 N 2 N n Maximise ˆ Λ over Φ = longest path problem in TF map of w Y

  23. Best Net-CC : Extension of BCC Signal phase Φ is unknown : maximising ˆ Λ over possible phases Time-frequency (TF) mapping of ˆ Λ – TF map – Wigner-Ville transform [Chassande-mottin, Pai, IEEE SPL 2003] + Simplified template of smooth chirp – 1-dim ridge in WV i.e. δ ( t, f ( t )) == TF path integral on WV map [Chassande-mottin, Pai, PRD 2006] Λ = | Φ H Y 1 | 2 + | Φ H Y 2 | 2 = 2 � ˆ w Y ( t n , f ( t n )) w Y = w Y 1 + w Y 2 N 2 N n Maximise ˆ Λ over Φ = longest path problem in TF map of w Y

  24. Best Net-CC : Extension of BCC Signal phase Φ is unknown : maximising ˆ Λ over possible phases Time-frequency (TF) mapping of ˆ Λ – TF map – Wigner-Ville transform [Chassande-mottin, Pai, IEEE SPL 2003] + Simplified template of smooth chirp – 1-dim ridge in WV i.e. δ ( t, f ( t )) == TF path integral on WV map [Chassande-mottin, Pai, PRD 2006] Λ = | Φ H Y 1 | 2 + | Φ H Y 2 | 2 = 2 � ˆ w Y ( t n , f ( t n )) w Y = w Y 1 + w Y 2 N 2 N n Maximise ˆ Λ over Φ = longest path problem in TF map of w Y

  25. Simulations: Linear chirp in Gaussian white noise

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend