bernoulli ramanujan toeplitz e le matrici triangolari
play

Bernoulli, Ramanujan, Toeplitz e le matrici triangolari Carmine Di - PDF document

Due Giorni di Algebra Lineare Numerica www.dima.unige.it/ dibenede/2gg/home.html Genova, 1617 Febbraio 2012 Bernoulli, Ramanujan, Toeplitz e le matrici triangolari Carmine Di Fiore, Francesco Tudisco, Paolo Zellini Speaker: Carmine Di


  1. Due Giorni di Algebra Lineare Numerica www.dima.unige.it/ ∼ dibenede/2gg/home.html Genova, 16–17 Febbraio 2012 Bernoulli, Ramanujan, Toeplitz e le matrici triangolari Carmine Di Fiore, Francesco Tudisco, Paolo Zellini Speaker: Carmine Di Fiore By using one of the definitions of the Bernoulli numbers, we observe that they solve particular odd and even lower triangular Toeplitz (l.t.T.) systems. In a paper Ramanujan writes down a sparse lower triangular system solved by Bernoulli numbers; we observe that such system is equivalent to a sparse l.t.T. system. The attempt to obtain the sparse l.t.T. Ramanujan system from the l.t.T. odd and even systems, leads us to study efficient methods for solving generic l.t.T. systems. 1

  2. Bernoulli numbers are the rational numbers satisfying the following identity + ∞ + ∞ t B n (0) t n = − 1 B 2 k (0) � � (2 k )! t 2 k . e t − 1 = 2 t + n ! n =0 k =0 So, they satisfy the following linear equations � j [ j − 1 2 ] � − 1 � 2 j + B 2 k (0) = 0 , j = 2 , 3 , 4 , . . . , 2 k k =0 � 2  �  0   � 4 � 4  � �      B 0 (0) 1     0 2 B 2 (0) 2       � 6 � 6 � 6       � � � j even : B 4 (0) = 3 ,             0 2 4 B 6 (0) 4       � 8 � 8 � 8 � 8  � � � �  · ·     0 2 4 6   · · · · · � 1 �   0   � 3 � 3  � �      B 0 (0) 1     0 2 B 2 (0) 3 / 2       � 5 � 5 � 5  � � �      B 4 (0) 5 / 2 j odd : = .             0 2 4 B 6 (0) 7 / 2       � 7 � 7 � 7 � 7   � � � � · ·     0 2 4 6   · · · · · In other words, the Bernoulli numbers can be obtained by solving (by forward substitution) a lower triangular linear system (one of the above two). For example, by forward solving the first system, I have obtained the first Bernoulli numbers: B 0 (0) = 1 , B 2 (0) = 1 6 , B 4 (0) = − 1 30 , B 6 (0) = 1 42 , B 8 (0) = − 1 30 , B 10 (0) = 5 66 , B 12 (0) = − 691 2730 , B 14 (0) = 7 6 ≈ 1 . 16 , B 16 (0) = − 47021 6630 ≈ − 7 . 09 , . . . Bernoulli numbers appear in the Euler-Maclaurin summation formula, and, in particular, in the expression of the error of the trapezoidal quadrature rule as sum of even powers of the integration step h (the expression that justifies the efficiency of the Romberg-Trapezoidal quadrature method). Bernoulli numbers are also often involved when studying the Riemann-Zeta function. For example, well known is the following Euler formula: + ∞ ζ (2 n ) = 4 n | B 2 n (0) | π 2 n 1 � ζ ( s ) = k s , , n ∈ 1 , 2 , 3 , . . . 2(2 n )! k =1 (see also [Riemann’s Zeta Function, H. M. Edwards, 1974]). The Ramanujan’s paper we refer in the following is entitled “Some properties of Bernoulli’s numbers” (1911). 2

  3. The coefficient matrices of the previous two lower triangular linear systems are submatrices of the matrix X displayed here below: � 0 �   0   � 1 � 1 � �       1 0   � 2 � 2 � 2  � � �    1     1 2 1 1 0     � 3 � 3 � 3 � 3  � � � �    1 2 1         X = 1 3 = 1 3 3 1 . 0 2     � 4 � 4 � 4 � 4 � 4     � � � � � 1 4 6 4 1         1 3 4 1 5 10 10 5 1  0 2    � 5 � 5 � 5 � 5 � 5 � 5   � � � � � � · · · · · · ·     1 3 5  0 2 4  � 6 � 6 � 6 � 6 � 6 � 6 � 6   � � � � � � �     1 3 5 6  0 2 4  · · · · · · · · One can easily observe that X can be rewritten as a power series:   0 1 0   + ∞   1 2 0 �   k ! Y k , X = Y =   3 0   k =0   4 0   · · � � 1 1 i − 1 ( i − j )![ Y i − j ] ij = Proof: [ X ] ij = ( i − j )! j · · · ( i − 2)( i − 1) = , 1 ≤ j ≤ i ≤ n. j − 1 This remark is the starting point in order to show that � 2 �   0 � 4 � 4   � � 2       12 0 2 + ∞   � 6 � 6 � 6 1   (2 k + 2)! φ k =   � � � � 30 ,         56 0 2 4   k =0   � 8 � 8 � 8 � 8   � � � �   ·   0 2 4 6   · · · · · � 1 �   0 � 3 � 3   � � 1       3 0 2 + ∞   � 5 � 5 � 5 1   (2 k + 1)! φ k =   � � � � 5 ,         7 0 2 4     k =0 � 7 � 7 � 7 � 7   � � � �   ·   0 2 4 6   · · · · ·   0 2 0     12 0   where φ = , 2 = 1 · 2, 12 = 3 · 4, 30 = 5 · 6, . . . .   30 0     56 0   · · 3

  4. It follows that the linear systems solved by the Bernoulli numbers, can be rewritten as follows, in terms of the matrix φ :     1 / 2 1 / 2   B 0 (0) 2 / 12 1 / 6     B 2 (0) + ∞       1 3 / 30 1 / 10 �       (2 k + 2)! φ k =: q e , 2 B 4 (0) = 2 = 2 (almosteven)       4 / 56 1 / 14       B 6 (0) k =0       5 / 90 1 / 18     · · ·     1 / 1 1   B 0 (0) (3 / 2) / 3 1 / 2     B 2 (0) + ∞       1 � (5 / 2) / 5 1 / 2       (2 k + 1)! φ k =: q o . B 4 (0) = = (almostodd)       (7 / 2) / 7 1 / 2       B 6 (0)     k =0   (9 / 2) / 9 1 / 2     · · · Now we transform φ into a Toeplitz matrix. We have that   0     d − 1 d 1 1 2 0   d − 1 d 2       2 12 0 DφD − 1 =       d − 1 d 3       3 30 0       d − 1 d 4       4 56 0   · · · ·     0 0 2 d 2 0   1 0   d 1     12 d 3  0  1 0    d 2  = = xZ, Z = ,    30 d 4  0 1 0     d 3     56 d 5 1 0 0     d 4 · · · · iff d k = x k − 1 d 1 (2 k − 2)!, k = 1 , 2 , 3 , . . . , iff   1 x   2!   x 2    4!  D = d 1 D x , D x = .  ·    x n − 1     (2 n − 2)! · We are ready to introduce the two even and odd lower triangular Toeplitz (l.t.T.) systems solved by the Bernoulli numbers. Set   B 0 (0) B 2 (0)   b =   B 4 (0)   · where the B 2 i (0), i = 0 , 1 , 2 , . . . , are the Bernoulli numbers. 4

  5. Then the (almosteven) system � + ∞ (2 k +2)! φ k b = q e is equivalent to the system � + ∞ 1 (2 k +2)! ( D x φD − 1 1 x ) k ( D x b ) = k =0 2 k =0 2 D x q e , i.e. to the following l.t.T. even system: + ∞ x k � (2 k + 2)! Z k ( D x b ) = D x q e . 2 (even) k =0 Idem, the (almostodd) system � + ∞ (2 k +1)! φ k b = q o is equivalent to the system � + ∞ 1 (2 k +1)! ( D x φD − 1 1 x ) k ( D x b ) = k =0 k =0 D x q o , i.e. to the following l.t.T. odd system: + ∞ x k � (2 k + 1)! Z k ( D x b ) = D x q o . (odd) k =0 So, Bernoulli numbers can be computed by using a l.t.T. linear system solver . Such solver yields the following vector z :   1 · B 0 (0) x 2! B 2 (0)     x 2 4! B 4 (0)     ·     z = D x b = , x s  (2 s )! B 2 s (0)      ·    x n − 1  (2 n − 2)! B 2 n − 2 (0)   · from which one obtains the vector of the first n Bernoulli numbers: { b } n = { D − 1 x z } n . Why x positive different from 1 may be useful? A suitable choice of x can make possible and more stable the computation via a l.t.T. solver of the entries z i of z for very large i . In fact, since √ i 2 i x i x i p i +1 x (2 i )! B 2 i (0) ≈ ( − 1) i +1 p i , p i = (2 i )!4 πi ( πe ) 2 i , → 4 π 2 , p i (2 i )! B 2 i (0) | → 0 (+ ∞ ) if x < 4 π 2 ( x > 4 π 2 ), both bad situations. Instead, for x ≈ 4 π 2 = we have that | x i 39 . 47 .. the sequence | x i (2 i )! B 2 i (0) | , i = 0 , 1 , 2 , . . . , should be lower and upper bounded. . . . | x 2 (4)! B 4 (0) | ≤ 1 iff | x | ≤ 26 . 84 | x 4 (8)! B 8 (0) | ≤ 1 iff | x | ≤ 33 . 2 | x 8 (16)! B 16 (0) | ≤ 1 iff | x | ≤ 36 . 2 (32)! B 32 (0) | ≤ 1 about iff | x | 16 ≤ (8 . 54) 32 | x 16 1 iff | x | ≤ 37 . 82 1293 4 · 7 . 09 (2 s )! 4 √ πs ( πe ) 2 s | ≤ 1 iff | x | s ≤ (2 s )! ( πe ) 2 s | x s (2 s )! B 2 s (0) | ≤ 1 about iff | x s s 2 s 4 √ πs . . . s 2 s More generally, the parameter x should be used to make more stable the l.t.T. solver. 5

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend