beam energy scan using a viscous hydro cascade model
play

Beam energy scan using a viscous hydro+cascade model Yuriy KARPENKO - PowerPoint PPT Presentation

Beam energy scan using a viscous hydro+cascade model Yuriy KARPENKO Frankfurt Institute for Advanced Studies/ Bogolyubov Institute for Theoretical Physics FAIRNESS 2013, September 21, 2013 In collaboration with M. Bleicher, P . Huovinen, H.


  1. Beam energy scan using a viscous hydro+cascade model Yuriy KARPENKO Frankfurt Institute for Advanced Studies/ Bogolyubov Institute for Theoretical Physics FAIRNESS 2013, September 21, 2013 In collaboration with M. Bleicher, P . Huovinen, H. Petersen Yuriy Karpenko (FIAS/BITP) Energy scan using visc.hydro+cascade FAIRNESS 2013, September 21, 2013 1 / 18

  2. Introduction: heavy ion collision in pictures 1 Typical size Typical lifetime 10 fm ∝ 10 − 14 m 10 fm/c ∝ 10 − 23 s 10 − 8 sec after the collision: hadrons are detected 1 Yuriy Karpenko (FIAS/BITP) Energy scan using visc.hydro+cascade FAIRNESS 2013, September 21, 2013 2 / 18

  3. “Stages of Heavy Ion Collision” Initial(pre-thermal) stage 1 I Thermalization 1. Ingredients of hydro+cascade model : Hydrodynamic expansion 2 I Quark-gluon plasma Initial stage model 1 phase Enforced thermalization I Phase transition Hydrodynamic solution 2 I Hadron Gas phase I Equation of state for ⇔ I Chemical freeze-out hydrodynamics I End of hydrodynamic I transport coefficients regime Particlization and 3 Kinetic stage 3 switching to a cascade Kinetic freeze-out ⇓ Free streaming, then hadrons are detected Yuriy Karpenko (FIAS/BITP) Energy scan using visc.hydro+cascade FAIRNESS 2013, September 21, 2013 3 / 18

  4. Where do we want to apply it Yuriy Karpenko (FIAS/BITP) Energy scan using visc.hydro+cascade FAIRNESS 2013, September 21, 2013 4 / 18

  5. Where do we want to apply it small net baryon density: hydro(+cascade) model is well established arXiv: “hydrodynamic” + “RHIC” = 42 publications large net baryon density: arXiv: “hydrodynamic” + “SPS” = 8 publications arXiv: “hydrodynamic” + “FAIR” = 3 publications Yuriy Karpenko (FIAS/BITP) Energy scan using visc.hydro+cascade FAIRNESS 2013, September 21, 2013 4 / 18

  6. 1. Ingredients of the model : Initial stage: 1 UrQMD Hydrodynamic solution 2 I Equation of state for hydrodynamics: Chiral model coupled to Polyakov loop to include the deconfinement phase transition F good agreement with Ingredients essential for beam lattice QCD data at energy scan studies are µ B = 0 marked red. F Applicable also at finite baryon densities I transport coefficients EoS reference: J. Steinheimer, Particlization and 3 S. Schramm and H. Stocker, switching back to cascade J. Phys. G 38, 035001 (2011). (UrQMD) Yuriy Karpenko (FIAS/BITP) Energy scan using visc.hydro+cascade FAIRNESS 2013, September 21, 2013 5 / 18

  7. Initial conditions for hydrodynamic evolution particle phase hydro phase incoming nuclei √ t 2 − z 2 = τ 0 (red curve): τ = T 0 µ of fluid = averaged T 0 µ of particles Yuriy Karpenko (FIAS/BITP) Energy scan using visc.hydro+cascade FAIRNESS 2013, September 21, 2013 6 / 18

  8. Hydrodynamic stage The hydrodynamic equations in arbitrary coordinate system: ∂ ; ν T µ ν = ∂ ν T µ ν + Γ µ νλ T νλ + Γ ν νλ T µ λ = 0 (1) where (we choose Landau definition of velocity) T µ ν = ε u µ u ν − ( p + Π )( g µ ν − u µ u ν )+ π µ ν (2) and ∆ µ ν = g µ ν − u µ u ν Evolutionary equations for shear/bulk, coming from Israel-Stewart formalism: < u γ ∂ ; γ π µ ν > = − π µ ν − π µ ν − 4 3 π µ ν ∂ ; γ u γ NS (3a) τ π − 4 u γ ∂ ; γ Π = − Π − Π NS 3 Π ∂ ; γ u γ (3b) τ Π where < A µ ν > = ( 1 β + 1 β − 1 α ∆ ν 2 ∆ ν 3 ∆ µ ν ∆ αβ ) A αβ 2 ∆ µ α ∆ µ Yuriy Karpenko (FIAS/BITP) Energy scan using visc.hydro+cascade FAIRNESS 2013, September 21, 2013 7 / 18

  9. Fluid → particle transition ε = ε sw = 0 . 5 GeV/fm 3 (end of green zone): T 0 µ of hadron-resonance gas = T 0 µ of fluid Momentum distribution from Landau/Cooper-Frye prescription: particle phase p 0 d 3 n i g i 1 Z p µ d d 3 p = ⇣ p ν u ν ( x ) − µ i ( x ) hydro phase ( 2 π ) 3 ⌘ exp ± 1 T ( x ) Cornelius subroutine ∗ is used to incoming nuclei compute ∆ σ i on transition hypersurface. UrQMD cascade is employed after particlization surface. ∗ Huovinen P and Petersen H 2012, Eur.Phys.J. A 48 171 Yuriy Karpenko (FIAS/BITP) Energy scan using visc.hydro+cascade FAIRNESS 2013, September 21, 2013 8 / 18

  10. Model validation at top RHIC energy Setup: smooth 3D initial conditions " # − θ ( | η | − ∆ η )( | η | − ∆ η ) 2 ε ( τ 0 , ~ r T , η ) = ε MCG ( ~ r T ) · θ ( Y b − | η | ) exp σ 2 η Y b is beam rapidity, parameters: ∆ η = 1 . 3, σ η = 2 . 1 (chosen from the fit to PHOBOS dN ch / d η ) 0.18 STAR 20-30% ideal + UrQMD ideal + UrQMD 0.16 η /S=0.1 + UrQMD 2 10 η /S=0.1 + UrQMD PHENIX 20-30% 0.14 /S=0.08 + UrQMD η dy) 10 0.12 T dp 0.1 T 2 p v 1 π N/(2 0.08 2 d 0.06 10 -1 0.04 p distributions, π , K, p v all charged T -2 10 2 0.02 0 0.5 1 1.5 2 2.5 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 p [GeV] p [GeV] T T Yuriy Karpenko (FIAS/BITP) Energy scan using visc.hydro+cascade FAIRNESS 2013, September 21, 2013 9 / 18

  11. Beam energy scan (BES) Yuriy Karpenko (FIAS/BITP) Energy scan using visc.hydro+cascade FAIRNESS 2013, September 21, 2013 9 / 18

  12. Results: E lab = 158 A GeV Pb-Pb (SPS) √ s NN = 17 . 3 GeV, 0-5% central collisions ( b = 0 ... 3 . 4 fm) 200 ideal + UrQMD 180 η /S=0.1 + UrQMD /S=0.2 + UrQMD η 160 NA49 - π NA49 K+ 140 NA49 K- 120 dN/dy 100 80 60 40 20 0 -4 -2 0 2 4 y → strong viscous entropy production Yuriy Karpenko (FIAS/BITP) Energy scan using visc.hydro+cascade FAIRNESS 2013, September 21, 2013 10 / 18

  13. Results: E lab = 158 A GeV Pb-Pb (SPS) √ s NN = 17 . 3 GeV, 0-5% central collisions ( b = 0 ... 3 . 4 fm) ideal + UrQMD η /S=0.1 + UrQMD 3 /S=0.2 + UrQMD 10 η NA49 - π NA49 K- NA49 K+ dy) 2 10 T dm T N/(m 10 2 d 1 0 0.2 0.4 0.6 0.8 1 m -m [GeV] T → viscosity causes stronger transverse expansion Yuriy Karpenko (FIAS/BITP) Energy scan using visc.hydro+cascade FAIRNESS 2013, September 21, 2013 11 / 18

  14. Results: E lab = 158 A GeV Pb-Pb (SPS) Mid-central events as defined by NA49 ( c = 12 . 5 − 33 . 5 % ) 0.2 0.2 NA49 v {4} NA49 v {4} 2 2 0.18 0.18 NA49 v standard ideal + UrQMD 2 ideal + UrQMD η /S=0.1 + UrQMD 0.16 0.16 η /S=0.1 + UrQMD η /S=0.2 + UrQMD 0.14 0.14 η /S=0.2 + UrQMD 0.12 0.12 2 2 0.1 0.1 v v 0.08 0.08 0.06 0.06 0.04 0.04 pion v proton v 2 0.02 0.02 2 0 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 p [GeV] p [GeV] T T Yuriy Karpenko (FIAS/BITP) Energy scan using visc.hydro+cascade FAIRNESS 2013, September 21, 2013 12 / 18

  15. Results: E lab = 80 , 40 , 20 A GeV Pb-Pb (SPS) Corresp. √ s NN = 12 . 3 , 8 . 8 , 6 . 3 GeV E = 80 A GeV lab ideal + UrQMD η /S=0.1 + UrQMD 3 10 η /S=0.2 + UrQMD Pion & kaon pt-distributions for NA49 π - NA49 K- dy) most central events ( c = 0 − 5 % , NA49 K+ 2 10 T dm b = 0 ... 3 . 4 fm) T N/(m 10 2 d Overall good description with η / S = 0 . 2 except for K − for lowest 1 energies 0 0.2 0.4 0.6 0.8 1 m -m [GeV] T E = 40 A GeV E = 20 A GeV lab lab ideal + UrQMD 3 ideal + UrQMD 10 3 /S=0.1 + UrQMD /S=0.1 + UrQMD η η 10 η /S=0.2 + UrQMD η /S=0.2 + UrQMD NA49 π - NA49 π - dy) NA49 K- dy) 10 2 NA49 K- 2 NA49 K+ 10 NA49 K+ T T dm dm T T N/(m N/(m 10 10 2 2 d d 1 1 -1 10 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 m -m [GeV] m -m [GeV] T T Yuriy Karpenko (FIAS/BITP) Energy scan using visc.hydro+cascade FAIRNESS 2013, September 21, 2013 13 / 18

  16. v 2 for BES at RHIC ( √ s NN = 7 . 7 , 27 , 39 GeV Au-Au) 0.3 v {4} , s =7.7 A GeV 2 v {4} , s =27 A GeV 2 v {4} , s =39 A GeV 0.25 2 ideal + UrQMD, s =7.7 A GeV ideal + UrQMD, s =27 A GeV 0.2 ideal + UrQMD, s =39 A GeV η /S=0.2 + UrQMD, s =7.7 A GeV η /S=0.2 + UrQMD, s =27 A GeV 2 0.15 η /S=0.2 + UrQMD, s =39 A GeV v 0.1 0.05 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 p [GeV] T η / S ≥ 0 . 2 is required in hydro phase for all BES energies. Yuriy Karpenko (FIAS/BITP) Energy scan using visc.hydro+cascade FAIRNESS 2013, September 21, 2013 14 / 18

  17. K + / π + , K − / π − vs collision energy 0.3 0.1 K+/ +, full phase space K-/ π -, full phase space π 0.09 0.25 0.08 0.07 0.2 0.06 0.15 0.05 0.04 0.1 0.03 ideal + UrQMD 0.02 η /S=0.1 + UrQMD 0.05 /S=0.2 + UrQMD η 0.01 0 0 2 4 6 8 10 12 14 16 18 2 4 6 8 10 12 14 16 18 s [GeV] s [GeV] points: exp. data (from AGS, NA49, PHENIX) K + / π + decreases and K − / π − increases due to additional entropy production in viscous hydro phase Yuriy Karpenko (FIAS/BITP) Energy scan using visc.hydro+cascade FAIRNESS 2013, September 21, 2013 15 / 18

  18. HBT(interferometry) measurements The only tool for space-time measurements at the scales of 10 − 15 m, 10 − 23 s ~ q = ~ p 2 − ~ p 1 k = 1 ~ 2 ( ~ p 1 + ~ p 2 ) P ( p 1 ) P ( p 2 ) = real event pairs P ( p 1 , p 2 ) C ( p 1 , p 2 ) = mixed event pairs Gaussian approximation of CFs ( q → 0): q ) = 1 + λ ( k ) e − q 2 out R 2 out − q 2 side R 2 side − q 2 long R 2 C ( ~ k , ~ long R out , R side , R long (HBT radii) correspond to homogeneity lengths , which reflect the space-time scales of emission process In an event generator, BE/FD two-particle amplitude (anti)symmetrization must be introduced Yuriy Karpenko (FIAS/BITP) Energy scan using visc.hydro+cascade FAIRNESS 2013, September 21, 2013 16 / 18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend