bayesian multi fidelity optimization under uncertainty
play

Bayesian Multi-Fidelity Optimization under Uncertainty Phaedon S. - PowerPoint PPT Presentation

Bayesian Multi-Fidelity Optimization under Uncertainty Phaedon S. Koutsourelakis Maximilian Koschade p.s.koutsourelakis@tum.de maximilian.koschade@tum.de Continuum Mechanics Group Department of Mechanical Engineering Technical University of


  1. Bayesian Multi-Fidelity Optimization under Uncertainty Phaedon S. Koutsourelakis Maximilian Koschade p.s.koutsourelakis@tum.de maximilian.koschade@tum.de Continuum Mechanics Group Department of Mechanical Engineering Technical University of Munich, Germany SIAM Computational Science and Engineering, Atlanta, 2017 1

  2. Optimization under Uncertainty Example: Material property as random field λ ( x ) • z : design variables (topology or shape) • θ ∼ p θ ( θ ) : stochastic influences, e.g. • material : discretized random field λ ( x ) • temperature / load : stochastic process • manufacturing tolerances : distributed around nominal value Figure 1: Cross section view of stiffening rib Introducing uncertainty to optimization problems In many engineering applications deterministic optimization is a simplification neglecting aleatory and epistemic uncertainty. 2

  3. Optimization under Uncertainty - Objective Function Maximize the expected utility � z ∗ = arg max V ( z ) = arg max U ( z , θ ) p θ ( θ ) d θ z z • z : design variables • θ ∼ p θ ( θ ) : stochastic influences on the system Example: minimize probability of failure U ( z , θ ) = 1 A ( z , θ ) (where A the event of non-failure) Example: design goal u target � 2 τ Q ( u ( z , θ ) − u target ) 2 � − 1 U ( z , θ ) = exp τ Q : penalty parameter enforcing the design goal 3

  4. Probabilistic Formulation of Optimization under Uncertainty Reformulation as Probabilistic Inference 1 Solution is given by an auxiliary posterior distribution 2 π ( z , θ ) � V ( z ) ∝ π ( z , θ ) d θ � �� � posterior � ∝ U ( z , θ ) p θ ( θ ) d θ � �� � � �� � likelihood prior since the marginal π ( z ) ∝ V ( z ), given a flat prior p z ( z ). Conducive to consistent incorporation of epistemic uncertainty due to approximate, lower-fidelity solvers! 1 Mueller (2005) 2 This approach should NOT be confused with Bayesian optimization 4

  5. Probabilistic Formulation of Optimization under Uncertainty Reformulation as Probabilistic Inference 1 Solution is given by an auxiliary posterior distribution 2 π ( z , θ ) � V ( z ) ∝ π ( z , θ ) d θ � �� � posterior �� � ∝ U ( z , θ ) p θ ( θ ) d θ p z ( z ) � �� � � �� � � �� � likelihood prior flat prior since the marginal π ( z ) ∝ V ( z ), given a flat prior p z ( z ). Conducive to consistent incorporation of epistemic uncertainty due to approximate, lower-fidelity solvers! 1 Mueller (2005) 2 This approach should NOT be confused with Bayesian optimization 4

  6. Example: Stochastic Poisson Equation ∇ · ( − λ ( x ) ∇ u ( x )) = 0 dim ( z ) = 21 z ( x 2 ) dim ( θ ) = 800 x 2 Solution x 1 Target u ( x 2 ) θ (1) x 2 u ( x 2 ) θ (2) x 2 z : Control heat influx θ : Log-Normal conductivity field 5

  7. 1 0 50 100 150 200 0 Sensitivity x 2 Solution via rank-1-perturbed Gaussian q ∗ z ∗ 0 . 8 0 . 6 0 . 4 0 . 2 − 200 − 150 − 100 − 50 heat fmux g ( x 2 ) Figure 2: Black-box stochastic variational inference in dimension 821 (dim ( θ ) = 800,dim ( z ) = 21) (Hoffman et al., 2013; Ranganath et al., 2013) 6

  8. 1 0 50 100 150 200 0 Sensitivity x 2 Solution via rank-1-perturbed Gaussian q ∗ z ∗ 0 . 8 0 . 6 0 . 4 0 . 2 − 200 − 150 − 100 − 50 heat fmux g ( x 2 ) � 10 3 � Cost : O forward evaluations 6

  9. • high dimension • expensive numerical model ⇒ probabilistic inference can quickly become prohibitive. How can we address this issue? 6

  10. Introduction of approximate solvers If we denote a = log U and y = [ z , θ ] T we can rewrite π ( y ) π a ( y ) ∝ U ( y ) p y ( y ) = exp ( a ( y )) p y ( y ) � exp ( a ) δ ( a − log U ( y )) p y ( y ) d a = � = exp ( a ) p ( a | y ) p y ( y ) d a Approximate solvers = Epistemic uncertainty • As long as p ( a | y ) is a Dirac, we recover posterior perfectly • Introduction of cheap, approximate solvers leads to dispersion of p ( a | y ) and irrevocable loss of information regarding y • We can consistently incorporate this epistemic uncertainty in the Bayesian framework 7

  11. Introduction of approximate solvers If we denote a = log U and y = [ z , θ ] T we can rewrite π ( y ) π a ( y ) ∝ U ( y ) p y ( y ) = exp ( a ( y )) p y ( y ) � exp ( a ) δ ( a − log U ( y )) p y ( y ) d a = � = exp ( a ) p ( a | y ) p y ( y ) d a Regression Model We may learn p ( a | y ) from e.g. a Bayesian regression model or a Gaussian process GP a = φ ( y ) T w + ǫ This approach is impractical for a high-dimensional probability space y = [ z , θ ] T ! 7

  12. Introduction of approximate solvers If we denote a = log U and y = [ z , θ ] T we can rewrite π ( y ) π a ( y ) ∝ U ( y ) p y ( y ) = exp ( a ( y )) p y ( y ) � exp ( a ) δ ( a − log U ( y )) p y ( y ) d a = � = exp ( a ) p ( a | y ) p y ( y ) d a Suppose instead we introduce a low-fidelity log-likelihood A � � p ( a | y ) = p ( a , A | y ) d A = p ( a | A , y ) p ( A | y ) d A � ≈ p ( a | A ) δ ( A − log U LowFi ) d A := p A ( a | y ) � ⇒ π A ( y ) ∝ exp ( a ) p A ( a | y ) p y ( y ) d a 7

  13. -10 0 -10 4 High-Fidelity a Low-Fidelity A -10 2 -10 6 -10 4 -10 2 -10 0 -10 6 Learning p ( a | y ) : Probabilistic multi-fidelity approach 3 Introduce low-fidelity log-likelihood A � p A ( a | y ) ≈ p ( a | A ) δ ( A − log U LowFi. ( y )) d A Pred. density p A ( a | A ) • belief of high-fidelity a given low-fidelity A • learn from a limited set of forward solver evaluations D • D = { a ( y n ) , A ( y n ) } N n =1 8

  14. -10 0 -10 4 High-Fidelity a Low-Fidelity A -10 2 -10 6 -10 4 -10 2 -10 0 -10 6 Learning p ( a | y ) : Probabilistic multi-fidelity approach 3 Introduce low-fidelity log-likelihood A � p A ( a | y ) ≈ p ( a | A ) δ ( A − log U LowFi. ( y )) d A Pred. density p A ( a | A , D ) • belief of high-fidelity a given low-fidelity A • learn from a limited set of forward solver evaluations D • D = { a ( y n ) , A ( y n ) } N n =1 8

  15. -10 0 -10 4 High-Fidelity a Low-Fidelity A -10 2 -10 6 -10 4 -10 2 -10 0 -10 6 Learning p ( a | y ) : Probabilistic multi-fidelity approach 3 Introduce low-fidelity log-likelihood A � p A ( a | y ) ≈ p ( a | A ) δ ( A − log U LowFi. ( y )) d A Learn p A ( a | A , D ) • Learn predictive density • Using e.g. variational relevance vector machine (VRVM) or Variational Heteroscedastic Gaussian Process (VHGP) • D = { a ( y n ) , A ( y n ) } N n =1 8

  16. -10 0 -10 4 High-Fidelity a Low-Fidelity A -10 2 -10 6 -10 4 -10 2 -10 0 -10 6 Learning p ( a | y ) : Probabilistic multi-fidelity approach 3 Introduce low-fidelity log-likelihood A � p A ( a | y , D ) ≈ p ( a | A , D ) δ ( A − log U LowFi. ( y )) d A Pred. density p A ( a | A , D ) • belief of high-fidelity a given low-fidelity A • learn from a limited set of forward solver evaluations D • D = { a ( y n ) , A ( y n ) } N n =1 8

  17. 1 y a Extended Probability Space - Illustration π A ( a , y ) π a ( y ) δ ( a − log U ( y )) 9

  18. 1 2 y a Extended Probability Space - Illustration Increase of epistemic uncertainty π A ( a , y ) π a ( y ) p A ( a | y ) π A ( y ) 9

  19. 1 2 3 y a Extended Probability Space - Illustration Increase of epistemic uncertainty π A ( a , y ) π a ( y ) p A ( a | y ) π A ( y ) 9

  20. Multi-Fidelity posterior π A ( y ) Approximate π A ( y ) If predictive density p ( a | y ) is given by a Gaussian � � � µ ( A ( y )) , σ 2 ( A ( y )) � N , then we obtain a log π A ( y ) = µ ( A ( y )) + 1 2 σ 2 ( A ( y )) + log p y ( y ) Place probability mass on y associated with 10

  21. Multi-Fidelity posterior π A ( y ) Approximate π A ( y ) If predictive density p ( a | y ) is given by a Gaussian � � � µ ( A ( y )) , σ 2 ( A ( y )) � N , then we obtain a + 1 2 σ 2 ( A ( y )) + log p y ( y ) log π A ( y ) = µ ( A ( y )) A Place probability mass on y associated with (A) : high predictive mean µ ( y ) 10

  22. Multi-Fidelity posterior π A ( y ) Approximate π A ( y ) If predictive density p ( a | y ) is given by a Gaussian � � � µ ( A ( y )) , σ 2 ( A ( y )) � N , then we obtain a + 1 2 σ 2 ( A ( y )) log π A ( y ) = µ ( A ( y )) + log p y ( y ) B A Place probability mass on y associated with (A) : high predictive mean µ ( y ) (B) : large epistemic uncertainty σ 2 ( y ) 10

  23. Example: Stochastic Poisson Equation ∇ · ( − λ ( x ) ∇ u ( x )) = 0 dim ( z ) = 1 z ( x 2 ) dim ( θ ) = 256 x 2 Solution x 1 Target u ( x 2 ) θ (1) x 2 u ( x 2 ) θ (2) x 2 z : Control heat influx θ : Log-Normal conductivity field 11

  24. 5 design variable z 30 40 50 60 70 80 90 100 0 20 10 15 Effect of lower-fidelity solvers 4 density estimate π A ( z |D ) z ∗ |Reference (32x32) π A ( z |D ) (8x8) Figure 2: dim ( θ ) = 256, speedup S 4 × 4 ≈ 2 , 000 , N = 200 training data samples, density estimate obtained using MALA 4 here the low-fidelity solvers are simply coarser discretizations of the stochastic 12 Poisson equation

  25. 10 design variable z 30 40 50 60 70 80 90 100 0 5 20 15 Effect of lower-fidelity solvers 4 density estimate π A ( z |D ) z ∗ |Reference (32x32) π A ( z |D ) (8x8) π A ( z |D ) (4x4) Figure 2: dim ( θ ) = 256, speedup S 4 × 4 ≈ 2 , 000 , N = 200 training data samples, density estimate obtained using MALA 4 here the low-fidelity solvers are simply coarser discretizations of the stochastic 12 Poisson equation

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend