basic algorithms for periodic linear inequalities and
play

Basic Algorithms for Periodic-Linear Inequalities and Integer - PowerPoint PPT Presentation

Basic Algorithms for Periodic-Linear Inequalities and Integer Polyhedra Alain Keterlin / Camus IMPACT 2018: January, 23, 2018 Motivation Periodic-Linear Inequalities The Omicron Test Decomposition Motivation / Polyhedra and Integers 1


  1. Basic Algorithms for Periodic-Linear Inequalities and Integer Polyhedra Alain Keterlin / Camus IMPACT 2018: January, 23, 2018

  2. Motivation Periodic-Linear Inequalities The Omicron Test Decomposition

  3. Motivation / Polyhedra and Integers 1 24 Omega’s nightmare LS( N ) 3 ≤ 11 x + 13 y ≤ 21 2 ≤ 3 y − x ≤ 5 − 8 ≤ 7 x − 9 y ≤ 6 1 − N ≤ 2 y − x ≤ 1

  4. Motivation / Polyhedra and Integers 1 24 Omega’s nightmare LS( N ) 3 ≤ 11 x + 13 y ≤ 21 2 ≤ 3 y − x ≤ 5 − 8 ≤ 7 x − 9 y ≤ 6 1 − N ≤ 2 y − x ≤ 1 ◮ holes ◮ empty (no integer points) ◮ “fuzzy” vertices ◮ non-empty rational ◮ periodic y -span projections

  5. Motivation / Incomplete Variable Elimination 2 24 Omega’s nightmare − 11 x + 3 ≤ 13 y ≤ − 11 x + 21 7 x − 6 ≤ 9 y ≤ 7 x + 8 O Fourier-Motzkin variable elimination (of y ) 9 · ( − 11 x + 3 ) ≤ 13 · ( 7 x + 8 ) ⇒ − 77 ≤ 190 x ≤ 267 13 · ( 7 x − 6 ) 9 · ( − 11 x + 21 ) ≤

  6. Motivation / Incomplete Variable Elimination 2 24 Omega’s nightmare − 11 x + 3 ≤ 13 y ≤ − 11 x + 21 7 x − 6 ≤ 9 y ≤ 7 x + 8 O Fourier-Motzkin variable elimination (of y ) 9 · ( − 11 x + 3 ) ≤ 13 · ( 7 x + 8 ) ⇒ − 77 ≤ 190 x ≤ 267 13 · ( 7 x − 6 ) 9 · ( − 11 x + 21 ) ≤ What went wrong? Loose bounds... ◮ A tight bound would be: 9 y ≤ 7 x + 8 − ( 7 x + 8 ) mod 9 ◮ Combinations accumulate and amplify the “slack” � ���������������������������������������������������������� �� ���������������������������������������������������������� � − 77 + [ 9 ( 12 − ( 2 − 11 x ) mod 13 ) + 13 (( 7 x + 8 ) mod 9 ) ] ≤ 190 x up to 2 · 9 · 13 − 9 − 13 = 212

  7. Motivation / Imprecise Bound Comparisons 3 24 LS( N ) ? x + 2 ≤ 3 y ≤ x + 5 x + 1 − N ≤ 2 y ≤ x + 1 for 1 <= x <= 3N+7 for max ( ⌈ x + 2 3 ⌉ , ⌈ x + 1 − N ⌉ ) <= y <= min ( ⌊ x + 5 3 ⌋ , ⌊ x + 1 2 ⌋ ) 2 exec S(x,y)

  8. Motivation / Imprecise Bound Comparisons 3 24 LS( N ) ? x + 2 ≤ 3 y ≤ x + 5 x + 1 − N ≤ 2 y ≤ x + 1 Which (upper) bound is effective where? 3 y = x + 5 4 1 + x = y 2 1 3 5 7 9 11 13

  9. Motivation / Imprecise Bound Comparisons 3 24 LS( N ) ? x + 2 ≤ 3 y ≤ x + 5 x + 1 − N ≤ 2 y ≤ x + 1 Which (upper) bound is effective where? 4 1 + x = y 2 1 3 5 7 9 11 13

  10. Motivation / Imprecise Bound Comparisons 3 24 LS( N ) ? x + 2 ≤ 3 y ≤ x + 5 x + 1 − N ≤ 2 y ≤ x + 1 Which (upper) bound is effective where? 3 y = x + 5 4 1 3 5 7 9 11 13

  11. Motivation / Imprecise Bound Comparisons 3 24 LS( N ) ? x + 2 ≤ 3 y ≤ x + 5 x + 1 − N ≤ 2 y ≤ x + 1 Which (upper) bound is effective where? 3 y = x + 5 4 1 + x = y 2 1 3 5 7 9 11 13 < < < < > > > > = = = = = =

  12. Motivation / Imprecise Bound Comparisons 3 24 LS( N ) ? x + 2 ≤ 3 y ≤ x + 5 x + 1 − N ≤ 2 y ≤ x + 1 Which (upper) bound is effective where? 3 y = x + 5 4 1 + x = y 2 1 3 5 7 9 11 13 3 · ( x + 1 − ( x + 1 ) mod 2 ) ≤≥ 2 · ( x + 5 − ( x + 5 ) mod 3 )

  13. Motivation / What Problem are we Trying to Solve? 4 24 1. Tightening bounds ◮ find a workable modulo representation ◮ define precise combinations 2. The Omicron Test ◮ Fourier-Motzkin-like decision procedure ◮ correct and complete 3. Polyhedron Decomposition ◮ via affine unswitching ◮ applications: transformation, projection, optimization Strategy ◮ Be Radically Integral ◮ no ⌊ ⌋ or ⌈ ⌉ , no inexact division ◮ no loose bound! ◮ Focus on Representation, not on Algorithms ◮ find a set of elementary operations ◮ algorithms should simply repeat while possible

  14. Motivation Periodic-Linear Inequalities The Omicron Test Decomposition

  15. Periodic-Linear Inequalities / Periodic Numbers 5 24 A periodic number is a collection of numbers indexed by the congruence class of an expression:     if x ≡ 0 mod π v 0     v 1 if x ≡ 1 mod π � � π   v 0 , v 1 , . . . , v π − 1 x =  .  .   .  if x ≡ ( π − 1 ) mod π v π − 1 Essentially a notation, with useful operations: � v 0 , v 1 , . . . � π x + 1 = � v 1 , . . . , v 0 � π Rotation x i � � π / gcd ( π , c ) � v 0 , . . . � π Division . . . , v ( ci mod π ) , . . . cx = x i � � β � v 0 , . . . � α . . . , � v 0 , . . . � α Distribution w i , . . . = β � w 0 ,..., w β − 1 � x x � α i � � v 0 , . . . , v α − 1 � α . . . , � v 0 , . . . , v α − 1 � α Separation i + y , . . . x + y = x

  16. Periodic-Linear Inequalities / Modulos 6 24 Modulos: for any expression X X mod π = � 0 , 1 , . . . , π − 1 � π X The maximal multiple of π less than or equal to X X − X mod π = X − � 0 , 1 , . . . , π − 1 � π X Tightened linear bounds have: ◮ a sharp linear part 8 + x 7 ◮ a periodic correction = y 9 9 y ≤ 7 x + 8 − ( 7 x + 8 ) mod 9 ≤ 7 x + 8 − � 0 , . . . , 8 � 9 7 x + 8 ≤ 7 x + 8 − � 8 , 6 , 4 , 2 , 0 , 7 , 5 , 3 , 1 � 9 x Works for any number of variables: � 3 �� � 1 � � 1 � � 1 � v 0 , v 1 , v 2 � 3 � v 2 , v 1 , v 0 � 3 � v 1 , v 0 , v 2 � 3 � v 0 , v 2 , v 1 � 3 y , y , 2 x + 6 y + 5 z − 1 = x x x y z

  17. Periodic-Linear Inequalities / Normal Forms 7 24 Periodic-linear expressions (PLEs) in normal form over [ x 1 , . . . , x n ] : � n a i x i � � � π n � � π n − 1 � · · · �· · · � π 1 · · · , x 1 · · · x n − 1 , · · · + � � x n i = 1 or in simplified normal form � π n � a n − 1 x n − 1 + �· · ·� π n − 1 a n x n + · · · , x n − 1 , · · · x n If X and Y are PLEs, n an integer, then: ( X mod π ) , X [ Y / x k ] are all PLEs nX , ( X + Y ) , Periodic-linear inequalities are PLEs compared to zero: a n x n + � X 0 , . . . � π n x n ≥ 0 with X 0 , . . . PLEs over [ x 1 , . . . , x n − 1 ]

  18. Periodic-Linear Inequalities / Linearity and Periodicity 8 24 LS( N ) over [ N , x , y ] with tightened inequalities: x + � 3 , 2 , 4 � x ≤ 3 y ≤ x + � 3 , 5 , 4 � x � � x − N + � 2 , 1 � N , � 1 , 2 � N x ≤ 2 y ≤ x + � 0 , 1 � x and over [ N , x ] afer combination �� 2 , 1 � N , � 0 , 1 � N � x − N ≤ 0 0 ≤ � 3 , 0 , 3 � x � 6 � � 0 , 3 � N , � 7 , 4 � N , � 2 , 5 � N , � 6 , 1 , 8 , 3 , 4 , 5 � x ≤ x x ≤ 3 N + � 3 , 0 � N , � 4 , 7 � N , � 5 , 2 � N x Categories: � 1 � ◮ linear : 3 y ≤ x + � 3 , 5 , 4 � x y � � ◮ periodic : � 2 , 1 � N , � 0 , 1 � N x − N ≤ 0 x � � ◮ mixed : 6 , 1 , 8 , 3 , 4 , 5 x ≤ x

  19. Periodic-Linear Inequalities / Tightening 9 24 Given a (potentially loose) periodic-linear inequality over [ . . . , x n ] : a n x n ≤ � X 0 , . . . � π n � X 0 , . . . � π n or x n ≤ a n x n x n the following inequality is an equivalent tight bound i � � π n � � a n π n a n x n ≤ . . . , X i − 0 , 1 , . . . , a n π n − 1 X i − ia n , . . . x n → the rhs is a multiple of a n for all phases of x n modulo π n (and all phases of the other variables)

  20. Periodic-Linear Inequalities / Periodicity and Disjunction 10 24 Mixed tight bounds are “fuzzy” x + � 3 , 2 , 4 � x ≤ 3 y 2 y ≤ x + � 0 , 1 � x ⇒ � 6 , 1 , 8 , 3 , 4 , 5 � x ≤ x 1 3 4 5 6 8 Disjoin turns a mixed bound into a disjunction of linear bounds: it computes a major bound plus outliers � 6 , 1 , 8 , 3 , 4 , 5 � x ≤ x ⇒ ( x = 1 ) ∨ ( 3 ≤ x ) � 6 � � 0 , 3 � N , � 7 , 4 � N , � 2 , 5 � N , x ≤ 3 N + ⇒ ( x ≤ 3 N + 5 ) ∨ ( x = 3 N + 7 ) � 3 , 0 � N , � 4 , 7 � N , � 5 , 2 � N x Omega’s nightmare (lef corner) − 11 x + � . . . � 13 9 y ≤ 7 x + � . . . � 9 x ≤ 13 y x � 117 , 73 , 29 , − 15 , . . . , − 29 , 44 � 117 ≤ 190 x x � 117 , 1 , 2 , 3 , . . . , 115 , 116 � 117 ⇒ ≤ x x O 1 117 1 ≤ x ⇒

  21. Motivation Periodic-Linear Inequalities The Omicron Test Decomposition

  22. The Omicron Test / Correct and Complete Decision 11 24 Fourier-Motzkin elimination on Q relies on an equivalence: f l ( x 1 , . . . , x n − 1 ) ≤ ax n bx n ≤ f u ( x 1 , . . . , x n − 1 ) Z , Q    �  Q � b · f l ( x 1 , . . . , x n − 1 ) ≤ a · f u ( x 1 , . . . , x n − 1 ) Restoring completeness on Z by tightening ( 4 ≤ 3 x ) ( 3 x ≤ 5 ) loose bounds L ≤ ax bx ≤ U L ′ ≤ ax bx ≤ U ′ ( 3 x ≤ 3 ) tight bounds ( 6 ≤ 3 x ) bL ′ ≤ aU ′ ( 6 ≤ 3 ) combination → keep bounds tight at all times

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend