bas basic ic el elec ec en engr gr lab lab
play

Bas Basic ic El Elec. ec. En Engr gr. . Lab Lab ECS EC S - PowerPoint PPT Presentation

Bas Basic ic El Elec. ec. En Engr gr. . Lab Lab ECS EC S 204 04/210 Dr. Prapun Suksompong prapun@siit.tu.ac.th Office Hours: BKD 3601-7 Tuesday 9:30-10:30 Friday 14:00-16:00 1 Lab 7 Operational amplifier Inverting


  1. Bas Basic ic El Elec. ec. En Engr gr. . Lab Lab ECS EC S 204 04/210 Dr. Prapun Suksompong prapun@siit.tu.ac.th Office Hours: BKD 3601-7 Tuesday 9:30-10:30 Friday 14:00-16:00 1

  2. Lab 7  Operational amplifier  Inverting amplifier  Inverting Integrator 2

  3. Op-Amp 741  OP erational AMP lifier V+ , Positive power supply O Noninverting (1) Offset null NC (8) (7) input (2) Inverting (3) V+ (7) (6) input (3) Noninverting + Output (6) (2) Output input (4) Inverting (4) V- Offset null (5) V- , Negative input power supply 3

  4. Placing op amps on the proto-board  Plug in op amp chips so that they straddle the troughs on the proto board.  In this way, each pin is connected to a different hole set.   4

  5. Powering the op amp  The op amp must be powered by O (1) Offset null NC (8) (2) Inverting voltage supplies. V+ (7) input (3) Noninverting + Output (6) input  These supplies are often ignored (4) V- Offset null (5) in op amp circuit diagrams for the sake of simplicity. Noninverting + input V cc (7) (3) - (6) + (2) (4) V cc Inverting - input 5

  6. Part A: Inverting Am Amplif ifie ier R F +5 V R R 2 7 + 6 V i V o + 4 3 Sinusoid - 1 kHz -5 V R   F V V. o i R R 6

  7. Part A: Inverting Am Amplif ifie ier R F +5 V R R + 2 7 V cc - V o 6 V i + + 4 V cc 3 Sinusoid - -5 V 1 kHz CH1 CH2 R   F V V. o i R R 7

  8. 8

  9. Part B: Inverting In Integ egrat ator or + v C -      i C i t i t C i C   R v t V+ d     i C v t o X R dt i in + v i t v o 1 +          v t v 0 v t dt - V- o o i RC 0 T   v t h i   h 2 h Zero-average input (DC offset = 0) Area = hT/2 1 T   h v t 9 RC 2 o

  10. Inverting Integrator (2) + v C -      i C i t i t C i C   R v t V+ d     i C v t o X R dt i in + v i t v o 1 +          v t v 0 v t dt - V- o o i RC 0 T  An input with nonzero mean (DC offset) can saturate the op amp.   v t   i v t o 10

  11. Inverting Integrator: AC SS Analysis + v C - i C C   Z   R C V+ V  V o i   R X i in +   v i V 1    v o + i      - R j C V-  The gain at f = 0 is unbounded. 11

  12. Inverting Integrator w/ Shunt Resistor  In practical circuit, a large resistor R p is usually shunted across the capacitor R p   / / Z R   C p  V V C o i   R R V+   R V    p i   X     i in R j R C 1 + p v i v o + - V-  Observe that at f = 0, the gain is finite. 12

  13. Inverting Integrator w/ Shunt Resistor  The output will not be R p triangular anymore. C  “Virtually triangular” if R V+ R p C >> T/2. X i in + v i v o + - V-    v t h i    Rp 1 r  v t h  o R 1 r   1     r exp   13 2 fR C   p

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend