baryons at finite temperature
play

Baryons at finite temperature Gert Aarts Oxford, March 2017 p. 1 - PowerPoint PPT Presentation

Baryons at finite temperature Gert Aarts Oxford, March 2017 p. 1 Introduction from hadronic to quark-gluon plasma thermodynamics: pressure, entropy, fluctuations symmetries: confinement, chiral symmetry spectroscopy quarkonia light


  1. Baryons at finite temperature Gert Aarts Oxford, March 2017 – p. 1

  2. Introduction from hadronic to quark-gluon plasma thermodynamics: pressure, entropy, fluctuations symmetries: confinement, chiral symmetry spectroscopy quarkonia light mesons baryons real time transport far from equilibrium Oxford, March 2017 – p. 2

  3. Introduction from hadronic to quark-gluon plasma thermodynamics: pressure, entropy, fluctuations symmetries: confinement, chiral symmetry spectroscopy quarkonia light mesons BARYONS real time transport far from equilibrium Oxford, March 2017 – p. 3

  4. Mesons in a medium mesons in a medium very well studied hadronic phase: thermal broadening, mass shift QGP: deconfinement/dissolution/melting quarkonia survival as thermometer transport: conductivity/dileptons from vector current chiral symmetry restoration relatively easy on the lattice high-precision correlators what about baryons? Oxford, March 2017 – p. 4

  5. Baryons in a medium lattice studies of baryons at finite temperature very limited screening masses De Tar and Kogut 1987 ... with a small chemical potential QCD-TARO: Pushkina, de Forcrand, Kim, Nakamura, Stamatescu et al 2005 temporal correlators Datta, Gupta, Mathur et al 2013 not much more ... holographic studies of baryons at finite temperature? Oxford, March 2017 – p. 5

  6. Outline baryons across the deconfinement transition: some basic thermal field theory lattice QCD – FASTSUM collaboration baryon correlators in-medium effects below T c parity doubling above T c spectral functions Oxford, March 2017 – p. 6

  7. Baryons α ′ G αα ′ ( x ) = � O α ( x ) O correlators (0) � in this work – N, ∆ , Ω baryons � � T O α N ( x ) = ǫ abc u α a ( x ) d b ( x ) Cγ 5 u c ( x ) � � � � �� T T O α 2 u α + d α ∆ ,i ( x ) = ǫ abc a ( x ) d b ( x ) Cγ i u c ( x ) a ( x ) u b ( x ) Cγ i u c ( x ) � � T O α Ω ,i ( x ) = ǫ abc s α a ( x ) s b ( x ) Cγ i s c ( x ) Oxford, March 2017 – p. 7

  8. Baryons essential difference with mesons: role of parity P O ( τ, x ) P − 1 = γ 4 O ( τ, − x ) positive/negative parity operators P ± = 1 O ± ( x ) = P ± O ( x ) 2(1 ± γ 4 ) no parity doubling in Nature: nucleon ground state positive parity: m + = m N = 0 . 939 GeV m − = m N ∗ = 1 . 535 GeV negative parity: thread: what happens as temperature increases? Oxford, March 2017 – p. 8

  9. Spectral properties in a medium euclidean correlators G ( x ) = � O ( x ) O † (0) � dispersion relation � ∞ dω ρ ( ω, p ) G ( iω n , p ) = 2 π ω − iω n −∞ imaginary part of retarded correlator ρ ( ω, p ) = 2Im G ( iω n → ω + iǫ, p ) back to euclidean time � ∞ dω G ( τ, p ) = 2 π K ( τ, ω ) ρ ( ω, p ) −∞ Oxford, March 2017 – p. 9

  10. Spectral properties: mesons/bosons � ∞ dω G ( τ, p ) = 2 π K ( τ, ω ) ρ ( ω, p ) −∞ bosonic operators ( ˜ τ = τ − 1 / 2 T ) e − iω n τ cosh( ω ˜ τ ) � K boson ( τ, ω ) = T = ω − iω n sinh( ω/ 2 T ) n kernel symmetric around τ = 1 / 2 T , odd in ω spectral decomposition ρ B ( p ) = 1 |� n | O (0) | m �| 2 (2 π ) 4 δ (4) ( p + k n − k m ) � n /T − e − k 0 m /T � e − k 0 � Z n,m if O † = ± O ⇒ ωρ ( ω, p ) ≥ 0 positivity Oxford, March 2017 – p. 10

  11. Spectral properties: baryons/fermions � ∞ dω G αα ′ ( τ, p ) = 2 π K ( τ, ω ) ρ αα ′ ( ω, p ) −∞ with α ′ G αα ′ ( x − x ′ ) = � O α ( x ) O ( x ′ ) � α ′ ρ αα ′ ( x − x ′ ) = �{ O α ( x ) , O ( x ′ ) }� fermionic Matsubara frequencies e − iω n τ e − ωτ 1 + e − ω/T = e − ωτ [1 − n F ( ω )] � K ( τ, ω ) = T = ω − iω n n kernel not symmetric, instead K (1 /T − τ, ω ) = K ( τ, − ω ) Oxford, March 2017 – p. 11

  12. Kernels bosons cosh( ω ˜ τ ) sinh( ω/ 2 T ) = [1 + n B ( ω )] e − ωτ + n B ( ω ) e ωτ K boson ( τ, ω ) = fermions: even and odd terms K ( τ, ω ) = 1 2 [ K e ( τ, ω ) + K o ( τ, ω )] , cosh( ω ˜ τ ) cosh( ω/ 2 T ) = [1 − n F ( ω )] e − ωτ + n F ( ω ) e ωτ K e ( τ, ω ) = K o ( τ, ω ) = − sinh( ω ˜ τ ) cosh( ω/ 2 T ) = [1 − n F ( ω )] e − ωτ − n F ( ω ) e ωτ no singular behaviour 2 T/ω for fermions, no transport subtlety Oxford, March 2017 – p. 12

  13. Spectral decomposition: Positivity � ρ ( x ) = γ µ ρ µ ( x ) + 1 1 ρ m ( x ) take trace with γ 4 , P ± = (1 1 ± γ 4 ) / 2 : m /T � 1 ρ 4 ( p ) = 1 4 |� n | O α (0) | m �| 2 (2 π ) 4 δ (4) ( p + k n − k m ) � n /T + e − k 0 e − k 0 � Z n,m,α m /T � 1 ρ ± ( p ) = ± 1 � 2 (2 π ) 4 δ (4) ( p + k n − k m ) n /T + e − k 0 � e − k 0 � � � n | O α � � ± (0) | m � Z 4 n,m,α ρ 4 ( p ) , ± ρ ± ( p ) ≥ 0 for all ω take trace with 1 1 ρ m ( p ) = [ ρ + ( p ) + ρ − ( p )] / 4 not sign definite Oxford, March 2017 – p. 13

  14. Charge conjugation charge conjugation symmetry (at vanishing density): G ± ( τ, p ) = − G ∓ (1 /T − τ, p ) ρ ± ( − ω, p ) = − ρ ∓ ( ω, p ) relates pos/neg parity channels using G + ( τ, p ) and ρ + ( ω, p ) positive- (negative-) parity states propagate forward (backward) in euclidean time negative part of spectrum of ρ + ↔ positive part of ρ − example: single state G + ( τ ) = A + e − m + τ + A − e − m − (1 /T − τ ) ρ + ( ω ) / (2 π ) = A + δ ( ω − m + ) + A − δ ( ω + m − ) Oxford, March 2017 – p. 14

  15. Chiral symmetry propagator � G ( x ) = γ µ G µ ( x ) + 1 1 G m ( x ) µ chiral symmetry { γ 5 , G } = 0 ⇒ G m = 0 hence G + ( τ, p ) = − G − ( τ, p ) = G + (1 /T − τ, p ) = 2 G 4 ( τ, p ) degeneracy of ± parity channels ρ + ( p ) = − ρ − ( p ) = ρ + ( − p ) = 2 ρ 4 ( p ) parity doubling in Nature at T = 0 : no chiral symmetry/parity doubling Oxford, March 2017 – p. 15

  16. Baryons in a medium questions: in-medium effects below T c ? relevant for heavy-ion phenomenology? emergence of parity doubling? connection to deconfinement transition, chiral symmetry? chiral symmetry ⇔ parity doubling Oxford, March 2017 – p. 16

  17. FASTSUM anisotropic N f = 2 + 1 Wilson-clover ensembles FASTSUM collaboration Ale Amato (Swansea->Helsinki->) GA (Swansea) Wynne Evans (Swansea->Bern->) Chris Allton (Swansea) Pietro Giudice (Swansea->Münster->) Simon Hands (Swansea) Tim Harris (TCD->Mainz->Milan) Seyong Kim (Sejong University) Benjamin Jaeger (Swansea->ETH) Maria-Paola Lombardo (Frascati) Aoife Kelly (Maynooth) Sinead Ryan (Trinity College Dublin) Bugra Oktay (Utah->) Don Sinclair (Argonne) Kristi Praki (Swansea) Jonivar Skullerud (Maynooth) Davide de Boni (Swansea) Oxford, March 2017 – p. 17

  18. This work GA, Chris Allton, Simon Hands, Jonivar Skullerud Davide de Boni, Benjamin Jäger, Kristi Praki PRD 92 (2015) 014503, arXiv:1502.03603 [hep-lat] in preparation Oxford, March 2017 – p. 18

  19. FASTSUM ensembles N f = 2 + 1 dynamical quark flavours, Wilson-clover many temperatures, below and above T c anisotropic lattice, a s /a τ = 3 . 5 , many time slices strange quark: physical value two light flavours: somewhat heavy m π = 384(4) MeV N s 24 24 24 24 24 24 24 24 N τ 128 40 36 32 28 24 20 16 T/T c 0.24 0.76 0.84 0.95 1.09 1.27 1.52 1.90 N cfg 140 500 500 1000 1000 1000 1000 1000 N src 16 4 4 2 2 2 2 2 tuning and N τ = 128 data from HadSpec collaboration Oxford, March 2017 – p. 19

  20. Baryons in a medium technical remarks studied various interpolation operators Gaussian smearing for multiple sources and sinks same smearing parameters at all temperatures Oxford, March 2017 – p. 20

  21. Lattice correlators nucleon positive parity ne gative T/ T c parity 1.90 0 10 1.52 N 1.27 1.09 G( ) 0.95 10 1 0.84 0.76 0.24 10 2 τ/a τ pos/neg parity channels nondegenerate more T dependence in negative-parity channel Oxford, March 2017 – p. 21

  22. Lattice correlators ∆ positive parity ne gative T/ T c parity 1.90 0 10 1.52 ∆ 1.27 1.09 G( τ ) 0.95 − 1 10 0.84 0.76 0.24 − 2 10 τ/a τ pos/neg parity channels nondegenerate more T dependence in negative-parity channel Oxford, March 2017 – p. 22

  23. Lattice correlators Ω positive parity ne gative T/ T c parity 1.90 0 10 1.52 Ω 1.27 1.09 G( τ ) 0.95 − 1 10 0.84 0.76 0.24 − 2 10 0 10 20 0 10 20 τ / a τ pos/neg parity channels nondegenerate more T dependence in negative-parity channel Oxford, March 2017 – p. 23

  24. Baryons in the hadronic phase determine masses of pos/neg-parity groundstates T/T c 0.24 0.76 0.84 0.95 PDG ( T = 0 ) m N 1158(13) 1192(39) 1169(53) 1104(40) 939 + m N 1779(52) 1628(104) 1425(94) 1348(83) 1535(10) − m ∆ 1456(53) 1521(43) 1449(42) 1377(37) 1232(2) + m ∆ 2138(114) 1898(106) 1734(97) 1526(74) 1710(40) − m Ω 1661(21) 1723(32) 1685(37) 1606(43) 1672.4(0.3) + m Ω 2193(30) 2092(91) 1863(76) 1576(66) 2250–2380–2470 − δ N 0.212(15) 0.155(35) 0.099(40) 0.100(35) 0.241(1) δ ∆ 0.190(31) 0.110(31) 0.089(31) 0.051(28) 0.162(14) δ Ω 0.138(9) 0.097(23) 0.050(23) -0.009(25) 0.147–0.175–0.192 δ = m − − m + masses in MeV m − + m + Oxford, March 2017 – p. 24

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend