baryogenesis and neutrino mass
play

Baryogenesis and Neutrino Mass A Common Link and Experimental - PowerPoint PPT Presentation

Baryogenesis and Neutrino Mass A Common Link and Experimental Signatures Bhupal Dev Washington University in St. Louis XIth International Conference of Interconnections between Particle Physics and Cosmology (PPC 2017) Texas A&M University


  1. Baryogenesis and Neutrino Mass A Common Link and Experimental Signatures Bhupal Dev Washington University in St. Louis XIth International Conference of Interconnections between Particle Physics and Cosmology (PPC 2017) Texas A&M University Corpus Christi May 22, 2017

  2. Matter-Antimatter Asymmetry η ∆ B ≡ n B − n ¯ ≃ 6 . 1 × 10 − 10 B n γ One number − → BSM Physics

  3. Baryogenesis Dynamical generation of baryon asymmetry. Basic ingredients: [Sakharov ’67] B violation, C & CP violation, departure from thermal equilibrium Necessary but not sufficient. + 6 =

  4. Baryogenesis Dynamical generation of baryon asymmetry. Basic ingredients: [Sakharov ’67] B violation, C & CP violation, departure from thermal equilibrium Necessary but not sufficient. + 6 = The Standard Model has all the basic ingredients, but CKM CP violation is too small (by ∼ 10 orders of magnitude). Observed Higgs boson mass is too large for a strong first-order phase transition. Requires New Physics!

  5. Testable Baryogenesis Many ideas, some of which can be realized down to the (sub)TeV scale, e.g. EW baryogenesis [Kuzmin, Rubakov, Shaposhnikov ’87; Cohen, Kaplan, Nelson ’90; Carena, Quiros, Wagner ’96; Cirigliano, Lee, Tulin ’11; Morrissey, Ramsey-Musolf ’12; ...] (Low-scale) Leptogenesis [Fukugita, Yanagida ’86; Akhmedov, Rubakov, Smirnov ’98; Pilaftsis, Underwood ’03; Fong, Gonzalez-Garcia, Nardi, Peinado ’13; BD, Millington, Pilaftsis, Teresi ’14; ...] Cogenesis [Kaplan ’92; Farrar, Zaharijas ’06; Kitano, Murayama, Ratz ’08; Kaplan, Luty, Zurek ’09; Berezhiani ’16; Bernal, Fong, Fonseca ’16; ...] WIMPy baryogenesis [Cui, Randall, Shuve ’11; Cui, Sundrum ’12; Racker, Rius ’14; ...]

  6. Testable Baryogenesis Many ideas, some of which can be realized down to the (sub)TeV scale, e.g. EW baryogenesis [Kuzmin, Rubakov, Shaposhnikov ’87; Cohen, Kaplan, Nelson ’90; Carena, Quiros, Wagner ’96; Cirigliano, Lee, Tulin ’11; Morrissey, Ramsey-Musolf ’12; ...] (Low-scale) Leptogenesis [Fukugita, Yanagida ’86; Akhmedov, Rubakov, Smirnov ’98; Pilaftsis, Underwood ’03; Fong, Gonzalez-Garcia, Nardi, Peinado ’13; BD, Millington, Pilaftsis, Teresi ’14; ...] Cogenesis [Kaplan ’92; Farrar, Zaharijas ’06; Kitano, Murayama, Ratz ’08; Kaplan, Luty, Zurek ’09; Berezhiani ’16; Bernal, Fong, Fonseca ’16; ...] WIMPy baryogenesis [Cui, Randall, Shuve ’11; Cui, Sundrum ’12; Racker, Rius ’14; ...] Can also go below the EW scale, independent of sphalerons, e.g. Post-sphaleron baryogenesis [Babu, Mohapatra, Nasri ’07; Babu, BD, Mohapatra ’08] Dexiogenesis [BD, Mohapatra ’15; Davoudiasl, Zhang ’15]

  7. Testable Baryogenesis Many ideas, some of which can be realized down to the (sub)TeV scale, e.g. EW baryogenesis [Kuzmin, Rubakov, Shaposhnikov ’87; Cohen, Kaplan, Nelson ’90; Carena, Quiros, Wagner ’96; Cirigliano, Lee, Tulin ’11; Morrissey, Ramsey-Musolf ’12; ...] (Low-scale) Leptogenesis [Fukugita, Yanagida ’86; Akhmedov, Rubakov, Smirnov ’98; Pilaftsis, Underwood ’03; Fong, Gonzalez-Garcia, Nardi, Peinado ’13; BD, Millington, Pilaftsis, Teresi ’14; ...] Cogenesis [Kaplan ’92; Farrar, Zaharijas ’06; Kitano, Murayama, Ratz ’08; Kaplan, Luty, Zurek ’09; Berezhiani ’16; Bernal, Fong, Fonseca ’16; ...] WIMPy baryogenesis [Cui, Randall, Shuve ’11; Cui, Sundrum ’12; Racker, Rius ’14; ...] Can also go below the EW scale, independent of sphalerons, e.g. Post-sphaleron baryogenesis [Babu, Mohapatra, Nasri ’07; Babu, BD, Mohapatra ’08] Dexiogenesis [BD, Mohapatra ’15; Davoudiasl, Zhang ’15] Testable effects: collider signatures, gravitational waves, electric dipole moment, 0 νββ , lepton flavor violation, n − ¯ n oscillation, ...

  8. Testable Baryogenesis Many ideas, some of which can be realized down to the (sub)TeV scale, e.g. EW baryogenesis [Kuzmin, Rubakov, Shaposhnikov ’87; Cohen, Kaplan, Nelson ’90; Carena, Quiros, Wagner ’96; Cirigliano, Lee, Tulin ’11; Morrissey, Ramsey-Musolf ’12; ...] (Low-scale) Leptogenesis [Fukugita, Yanagida ’86; Akhmedov, Rubakov, Smirnov ’98; Pilaftsis, Underwood ’03; Fong, Gonzalez-Garcia, Nardi, Peinado ’13; BD, Millington, Pilaftsis, Teresi ’14; ...] Cogenesis [Kaplan ’92; Farrar, Zaharijas ’06; Kitano, Murayama, Ratz ’08; Kaplan, Luty, Zurek ’09; Berezhiani ’16; Bernal, Fong, Fonseca ’16; ...] WIMPy baryogenesis [Cui, Randall, Shuve ’11; Cui, Sundrum ’12; Racker, Rius ’14; ...] Can also go below the EW scale, independent of sphalerons, e.g. Post-sphaleron baryogenesis [Babu, Mohapatra, Nasri ’07; Babu, BD, Mohapatra ’08] Dexiogenesis [BD, Mohapatra ’15; Davoudiasl, Zhang ’15] Testable effects: collider signatures, gravitational waves, electric dipole moment, 0 νββ , lepton flavor violation, n − ¯ n oscillation, ... This talk: Low-scale leptogenesis

  9. Leptogenesis [Fukugita, Yanagida ’86] A cosmological consequence of the seesaw mechanism. Provides a common link between neutrino mass and baryon asymmetry. Naturally satisfies the Sakharov conditions. L violation due to the Majorana nature of heavy RH neutrinos. / L → / B through sphaleron interactions. New source of CP violation in the leptonic sector (through complex Dirac Yukawa couplings and/or PMNS CP phases). Departure from thermal equilibrium when Γ N � H .

  10. Popularity of Leptogenesis

  11. Popularity of Leptogenesis

  12. Leptogenesis for Pedestrians [Buchm¨ uller, Di Bari, Pl¨ umacher ’05] Three basic steps: Generation of L asymmetry by heavy Majorana neutrino decay: 1 Partial washout of the asymmetry due to inverse decay (and scatterings): 2 Conversion of the left-over L asymmetry to B asymmetry at T > T sph . 3

  13. Boltzmann Equations [Buchm¨ uller, Di Bari, Pl¨ umacher ’02] dN N − ( D + S )( N N − N eq = N ) , dz dN ∆ L ε D ( N N − N eq = N ) − N ∆ L W , dz (where z = m N 1 / T and D , S , W = Γ D , S , W / Hz for decay, scattering and washout rates.) FInal baryon asymmetry: η ∆ B = d · ε · κ f d ≃ 28 1 27 ≃ 0 . 02 ( / L → / B conversion at T c + entropy dilution from T c to 51 recombination epoch). κ f ≡ κ ( z f ) is the final efficiency factor, where � z − � z D dN N z ′ dz ′′ W ( z ′′ ) dz ′ κ ( z ) = dz ′ e D + S z i

  14. CP Asymmetry Φ † Φ † Φ † Φ L N β N α N α N α N α × × N β L × L C L C Φ L C l l l (a) (b) (c) tree self-energy vertex h l α | 2 − | � | � Γ( N α → L l Φ) − Γ( N α → L c l Φ c ) h c l α | 2 � k Φ c ) � ≡ ε l α = � ( � h † � h ) αα + ( � h c † � Γ( N α → L k Φ) + Γ( N α → L c h c ) αα k with the one-loop resummed Yukawa couplings [Pilaftsis, Underwood ’03] � � h l α = � | ǫ αβγ | � h l α − i h l β β,γ m α ( m α A αβ + m β A βα ) − iR αγ [ m α A γβ ( m α A αγ + m γ A γα ) + m β A βγ ( m α A γα + m γ A αγ )] × , α | A βγ | 2 + m β m γ Re ( A 2 m 2 α − m 2 β + 2 im 2 α A ββ + 2 i Im ( R αγ )[ m 2 βγ )] � m 2 1 A αβ ( � � h l α � α h ∗ R αβ = ; h ) = l β . m 2 α − m 2 β + 2 im 2 α A ββ 16 π l

  15. Vanilla Leptogenesis Hierarchical heavy neutrino spectrum ( m N 1 ≪ m N 2 < m N 3 ). Both vertex correction and self-energy diagrams are relevant. For type-I seesaw, the maximal CP asymmetry is given by � 3 m N 1 ε max ∆ m 2 = 1 atm 16 π v 2 Lower bound on m N 1 : [Davidson, Ibarra ’02; Buchm¨ uller, Di Bari, Pl¨ umacher ’02] � � � � η B 0 . 05 eV m N 1 > 6 . 4 × 10 8 GeV κ − 1 � f 6 × 10 − 10 ∆ m 2 atm

  16. Vanilla Leptogenesis Hierarchical heavy neutrino spectrum ( m N 1 ≪ m N 2 < m N 3 ). Both vertex correction and self-energy diagrams are relevant. For type-I seesaw, the maximal CP asymmetry is given by � 3 m N 1 ε max ∆ m 2 = 1 atm 16 π v 2 Lower bound on m N 1 : [Davidson, Ibarra ’02; Buchm¨ uller, Di Bari, Pl¨ umacher ’02] � � � � η B 0 . 05 eV m N 1 > 6 . 4 × 10 8 GeV κ − 1 � f 6 × 10 − 10 ∆ m 2 atm Experimentally inaccessible! Also leads to a lower limit on the reheating temperature T rh � 10 9 GeV. In supergravity models, need T rh � 10 6 − 10 9 GeV to avoid the gravitino problem. [Khlopov, Linde ’84; Ellis, Kim, Nanopoulos ’84; Cyburt, Ellis, Fields, Olive ’02; Kawasaki, Kohri, Moroi, Yotsuyanagi ’08] Also in conflict with the Higgs naturalness bound m N � 10 7 GeV. [Vissani ’97; Clarke, Foot, Volkas ’15; Bambhaniya, BD, Goswami, Khan, Rodejohann ’16]

  17. Resonant Leptogenesis L l ( k, r ) N α ( p, s ) � ε ε ′ Φ( q ) Dominant self-energy effects on the CP -asymmetry ( ε -type) [Flanz, Paschos, Sarkar ’95; Covi, Roulet, Vissani ’96] . Resonantly enhanced, even up to order 1, when ∆ m N ∼ Γ N / 2 ≪ m N 1 , 2 . [Pilaftsis ’97; Pilaftsis, Underwood ’03] The quasi-degeneracy can be naturally motivated as due to approximate breaking of some symmetry in the leptonic sector. Heavy neutrino mass scale can be as low as the EW scale. [Pilaftsis, Underwood ’05; Deppisch, Pilaftsis ’10; BD, Millington, Pilaftsis, Teresi ’14] A testable scenario at both Energy and Intensity Frontiers.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend