back to 1994 1997
play

Back to 1994-1997 ( ) 1994-1997 ( CTP) - PowerPoint PPT Presentation

Back to 1994-1997 ( ) 1994-1997 ( CTP) : , ( , , ) Papers with Prof. Song Chiral perturbation theory versus


  1. Back to 1994-1997 고병원 ( 고등과학원 )

  2. 1994-1997 • 송희성 선생님 ( 서울대 CTP) • 박사과정 학생 : 이정일 , 백승원 ( 유채현 , 정동원 , 송완영 …)

  3. Papers with Prof. Song Chiral perturbation theory versus vector meson dominance in the decays phi --> rho gamma gamma and phi --> omega gamma gamma Pyungwon Ko (Hong-Ik U.), Jungil Lee, H.S. Song (Seoul Natl. U.). Oct 1995. 11 pp. Published in Phys.Lett. B366 (1996) 287-292 Inclusive S wave charmonium productions in B decays Pyungwon Ko (Hong-Ik U.), Jungil Lee, H.S. Song (Seoul Natl. U.). Oct 1995. 12 pp. Published in Phys.Rev. D53 (1996) 1409-1415 Color octet mechanism in γ + p → J/ ψ + x Pyungwon Ko (Hong-Ik U.), Jungil Lee, H.S. Song (Seoul Natl. U.). Feb 1996. 22 pp. Published in Phys.Rev. D54 (1996) 4312-4325 Color octet heavy quarkonium productions in Z0 decays at LEP Seungwon Baek (Seoul Natl. U.), P . Ko (Hong-Ik U.), Jungil Lee, H.S. Song (Seoul Natl. U.). Jul 1996. 14 pp. Published in Phys.Lett. B389 (1996) 609-615 Color octet mechanism and J/ ψ polarization at LEP Seungwon Baek (Seoul Natl. U.), P . Ko (Hong-Ik U.), Jungil Lee, H.S. Song (Seoul Natl. U.). Jan 1997. 15 pp. Published in Phys.Rev. D55 (1997) 6839-6843 Color octet mechanism in the inclusive D wave charmonium productions in B decays Pyung-won Ko (Hong-Ik U.), Jungil Lee, H.S. Song (Seoul Natl. U.). Jan 1997. 11 pp. Published in Phys.Lett. B395 (1997) 107-112 Polarized J / psi production at CLEO Seungwon Baek (Seoul Natl. U.), P . Ko (KAIST, Taejon), Jungil Lee, H.S. Song (Seoul Natl. U.). Apr 1998. 12 pp. Published in J.Korean Phys.Soc. 33 (1998) 97-101

  4. Chiral extensions of the SM

  5. � One scenario: gluon fusion + diphoton decay via loop � Production: gluon fusion � Diphoton decay channel � γ � g � g � γ � Colored particle � Charged particle � It is not easy to get σ (gg →Φ New )BR( Φ New →γγ )~5 fb � Ex) Two Higgs doublet Model (Type-II) � (Angelescu, Djouadi, Moreau arxiv:1512.0492) � σ (gg → A)~850 fb × 2cot 2 β � σ (gg → H)~850 fb × cot 2 β � BR(H →γγ )~O(10 -5 ) BR(A →γγ )~O(10 -5 ) We need exotic colored and/or charged particles � Let us discuss simple case of (SM) singlet scalar boson + exotic particles �

  6. Basic Questions • Raison d’être of (fundamental?) singlet scalar and vector- like fermions ? Completely singlet particles ??? • Uncomfortable to have a completely singlet • Two Options : Another new Higgs boson related with - New spontaneously broken gauge symmetry, or - Composite (pseudo)scalar boson • Why vector like fermions have EW scale mass ?

  7. Answers • New chiral U(1)’ symmetry broken by new singlet scalar (Higgs) • 750 GeV excess ~ U(1)’ breaking scalar (could be even dark Higgs) • Vectorlike fermions : chiral under new U(1)’ , anomaly cancellation, and get massive by new Higgs mechanism ~ EW scale mass • Can we generate phi(750) decay width ~ 45 GeV without any conflict with the known constraints ? • Yes, if phi(750) mainly decays into new particles • Many examples : (i) Leptophobic U(1)’ with fermions in the fundamental representation of E6, (ii) anther similar 2HDM + singlet model (iii) Dark U(1)’ plus dark sector, Dark Higgs decay into a pair of Z’

  8. A Type-II Extension has all the necessary ingredients Table 1: Matter contents in U(1) ′ model inspired by E 6 GUTs. Here, i denotes the generation index: i = 1 , 2 , 3. Z ex Fields SU(3) SU(2) U(1) Y U(1) ′ 2 Q i 1 / 6 − 1 / 3 3 2 u i 2 / 3 2 / 3 3 1 R d i − 1 / 3 − 1 / 3 3 1 R L i − 1 / 2 0 + 1 2 e i − 1 0 1 1 R n i 0 1 1 1 R H 2 − 1 / 2 0 1 2 H 1 − 1 / 2 − 1 + 1 2 0 − 1 Φ 1 1 D i − 1 / 3 2 / 3 3 1 L D i − 1 / 3 − 1 / 3 3 1 R � H i − 1 / 2 0 1 2 − L � H i − 1 / 2 − 1 1 2 R N i 0 − 1 1 1 L Fermions : 27 of E6 (!!!) Scalar Bosons : 2 Doublets + 1 Singlet

  9. Basic Ingredients • New vectorlike fermions which are chiral under new U(1)’ : non-decoupling effects on X->gg, gam gam • Diphoton at 750 GeV = Higgs boson from U(1)’ sym breaking, mostly a SM singlet scalar • All the masses from dynamical (Higgs) mechanism • New decay modes to enhance the total decay rate cf: SU(2)H by W.C.Huang, Y.L.S.Tsai,TCYuan (2015) and applied for 750 GeV diphoton excess

  10. Yukawa couplings The U(1) ′ -symmetric Yukawa couplings in our model are given by 1 i σ 2 Q i + y d R H 2 Q i + y e R H 2 L i + y n 1 i σ 2 L i + H.c., ij u j R H † ij d j ij e j ij n j R H † V y = y u (16) where σ 2 is the Pauli matrix. The Yukawa couplings to generate the mass terms for the extra particles are V ex = y D ij � R Φ � 1 i σ 2 � IJ � ij D j H j L H † R H 2 N j R Φ D i L + y H H i L + y N H i L + y ′ N IJ N c H i L + H.c. . (17) Complex Scalar DM One can introduce new Z ex 2 -odd scalar field X with the SU (3) C × SU (2) L × U (1) Y × U (1) H quantum numbers equal to (1 , 1 , 0; − 1). Then the gauge-invariant Lagrangian involving X is given by X 0 + λ H 1 X H † 1 H 1 + λ H 2 X H † L X = D µ X † D µ X − ( m 2 2 H 2 ) X † X − λ X ( X † X ) 2 � � Φ X ( Φ † X ) 2 + H.c. ′′ ′ − λ Φ X Φ † Φ X † X − λ Φ X | Φ † X | 2 − λ � � H R X † + H.c. ˜ LX L � y D H − dX d R D L X + y (18)

  11. 750 GeV Diphoton Excess Ko, Omura, Yu, arXiv:1601.00586 LHC13 1000 100 y � 10 � tot � 10 GeV � tot � 1 GeV Σ � pp � h � � � BR � h � �ΓΓ �� fb � Σ � pp � h � � � BR � h � �ΓΓ �� fb � y � 5 � tot � 10 GeV 1 10 0.01 0.1 y � 1 LHC13 500GeV � m f � 1TeV 10 � 4 0.001 200 400 600 800 1000 0 2 4 6 8 10 m f y

  12. Key Aspects of the Model • Extra fermions are chiral under U(1)’, and vectorlike under the SM gauge group : this is the consequence of gauge anomaly cancellation ( 27 rep. of E 6 group) • Their masses from U(1)’ breaking > nondecoupling • U(1)’-breaking scalar produces a new singlet-like scalar h_phi ~ 750 GeV scalar boson • Decay channels of 750 GeV are determined by gauge symmetry of the underlying Type-II 2HDM with U(1)’ Higgs gauge symmetry (hh, Hh, HH, Z’Z’,DM DM etc.)

  13. Higgs portal DM

  14. • Dark & visible matter and dark energy, neutrinos observation expectation v ∝ r − 1 / 2 Strong gravitational lensing in Abell 1689 Jan Oort ( 1932 ) , Fritz Zwicky ( 1933 ) Bullet cluster Heights of peaks ⇒ Ω b , Ω DM Ω b ' 0 . 048 Ω DM ' 0 . 259 Ω Λ ' 0 . 691 (Planck+WP+highL+BAO) 15

  15. Singlet Portals Baek, Ko, Park, arXiv:1303.4280, JHEP • If there is a dark sector and DM is thermal, then we need a portal to it • There are only three unique gauge singlets in the SM + RH neutrinos for Type I seesaw SM Sector Dark Sector H † H, B µ ν , N R N R ↔ e e.g. φ † X φ X , X µ ν , ψ † Hl L X φ X

  16. DM searches @ colliders : Beyond the EFT and simplified DM models - S. Baek, P . Ko, M. Park, WIPark, C.Yu, arXiv:1506.06556, PLB (2016) - P . Ko and Hiroshi Yokoya, arXiv:1603.04737, JHEP (2016) - P . Ko, A. Natale, M. Park, H. Yokoya, arXiv:1605.07058, JHEP(2017) - P . Ko and Jinmian Li, arXiv:1610.03997, PLB (2017)

  17. Crossing & WIMP detection Correct relic density � Efficient annihilation then Efficient production now Efficient annihilation now � � (Particle colliders) (Indirect detection) q q Efficient scattering now (Direct detection)

  18. 1 g q g χ q Γ i q ¯ ¯ φ � s ¯ q Γ i q ¯ χ Γ i χ ! χ Γ i χ Λ 2 m 2 i • Usually effective operator is replaced by a single propagator in simplified DM models • This is not good enough, since we have to respect the full SM gauge symmetry (Bell et al for W+missing ET) • In general we need two propagators, not one propagator, because there are two independent chiral fermions in 4-dim spacetime

  19. arXiv:1605.07058 (with A. Natale, M.Park, H. Yokoya) for t-channel mediator Our Model: a ’simplified model’ of colored t -channel, spin-0, mediators which produce various mono- x + missing energy signatures (mono-Jet, mono-W, mono-Z, etc.): g W q R,L χ u L χ q R , f e Q L f Q L q R,L ¯ ¯ χ ¯ d L ¯ χ W+missing ET : special g ¯ χ χ q R,L g ¯ χ q R , f Q L e q R,L q R , f Q L e χ q R,L q R,L

  20. 1 g q g χ q Γ i q ¯ ¯ φ � s ¯ q Γ i q ¯ χ Γ i χ ! χ Γ i χ Λ 2 m 2 i • This is good only for W+missing ET, and not for other singatures • The same is also true for (scalar)x(scalar) operator, and lots of confusion on this operator in literature • Therefore let me concentrate on this case in detail in this talk

  21. Singlet fermion CDM Baek, Ko, Park, arXiv:1112.1847 L SM � µ HS SH † H � λ HS 2 S 2 H † H mixing = L +1 S S � µ � 3 S 3 � λ S 2( ∂ µ S ∂ µ S � m 2 S S 2 ) � µ 3 S 4 S 4 invisible + ψ ( i ⇥ ∂ � m ψ 0 ) ψ � λ S ψψ decay SM H S Ψ Production and decay rates are suppressed relative to SM. This simple model has not been studied properly !! 22

  22. Monojet+missing ET Can be obtained by crossing : s <>t m 2 m 2 1 1  � 1 125 125 ! � ⌘ Λ 3 Λ 3 s � m 2 s � m 2 Λ 3 125 + im 125 Γ 125 2 + im 2 Γ 2 col ( s ) dd dd There is no single scale you can define for collider search for missing ET

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend