b hadron lifetimes in cms data
play

B hadron lifetimes in CMS data Jhovanny Mejia , C. Duran, M. Ramirez, - PowerPoint PPT Presentation

B hadron lifetimes in CMS data Jhovanny Mejia , C. Duran, M. Ramirez, I. Heredia, E. De La Cruz-Burelo Cinvestav IPN, Physics department High Energy Physics Group 1 / 16 Introduction All work presented here is in progress We make the


  1. B hadron lifetimes in CMS data Jhovanny Mejia , C. Duran, M. Ramirez, I. Heredia, E. De La Cruz-Burelo Cinvestav IPN, Physics department High Energy Physics Group 1 / 16

  2. Introduction • All work presented here is in progress • We make the lifetime measurement of differents hadrons: B s → J / Ψ f 0 , B d → J / Ψ K ∗ , B d → J / Ψ K 0 s , B + u → J / Ψ K + , Λ b → J / ΨΛ 0 and Ξ b → J / ΨΞ − • We can make contributions in different topics of particle physics like heavy quark expansion (HQE) and cp violation. • We will show CMS is competitive in several of the lifetime measurements. 2 / 16

  3. Λ b → J / ΨΛ 0 puzzle τ ( B + ) ≥ τ ( B 0 d ) ≃ τ ( B 0 s ) > τ (Λ 0 b ) ≫ τ ( B − C ) Λ Λ lifetime lifetime b b PDG (2014) -1 ψ Λ LHCb (2012, 1.0 fb ), J/ -1 ψ Λ ATLAS (2013, 4.9 fb ), J/ -1 ψ Λ CDF (2011, 4.3 fb ), J/ -1 ψ Λ CMS (2013, 5.0 fb ), J/ -1 ψ Λ DØ (2012, 10.4 fb ), J/ 280 300 320 340 360 380 400 420 440 460 480 µ m The issue of the Λ b lifetime is not yet solved. 3 / 16

  4. Why the lifetime in B 0 s → J /ψ f 0 (980)? △ Γ = Γ L s − Γ H s = 2 | Γ s 12 | cos φ s φ = φ s + φ ? 4 / 16

  5. Main difficulties with lifetime 5 / 16

  6. B 0 Λ b → J /ψ Λ 0 s → J /ψ f 0 (980) p p p p Ξ b → J /ψ Ξ − B + u → J /ψ K + p p p p 6 / 16

  7. Estimate of lifetime correction Data Data • We searched full simulated MC for B d → J / Ψ + K ∗ decays and divided them in two samples: with displaced vertex trigger and without Sample with Sample without displace vertex trigger displaced displaced triggers triggers 7 / 16

  8. Displaced vertex triggers effects • Effects due to triggers with displaced vertex affects more negative and low proper decay length of the B hadron. • Green no displaced vertex sample and Blue displaced vertex sample L XY · P T λ = M B P T · P T 8 / 16

  9. Triggers correction PDL = 0 . 02 µ m Ratio of displaced vertex to no displaced vertex samples distributions. 9 / 16

  10. Efficiency Due to high variations, we selected values greater than 0 . 02 cm. T = a + b ∗ λ a = 0 . 991559 ± 0 . 01108 b = 0 . 0917707 ± 0 . 147202 chi 2 = 1 . 20528 10 / 16

  11. How the flatness depends on the lifetime? Trigger efficiency on PDL 1 0.8 0.6 T ( λ ) = a + b ∗ λ 0.4 0.2 0 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 Flatness for PDL > 200 µ m does not depends on the lifetime of the B hadron. 11 / 16

  12. Probability Density Functions (Models) PDF = f s ∗ S M ∗ S λ ∗ S σ ∗ +(1 − f s ) ∗ B M ∗ B λ ∗ B σ • f s : sfraction of signal events • S M : Mass signal pdf • S λ : Signal proper decay length pdf (One exponential decay convoluted with Gaussian Resolution with event per event error) • S σ : Pdf for signal in PDL error distribution (Gaussian convoluted with exponentials) • B M :Background mass pdf (1 order polynomial) • B λ : Pdf for background in PDL (Several exponential decays convoluted with Gaussian Resolution with event per event error) • B σ :Pdf for background in PDL error distribution (Gaussian convoluted with exponentials) 12 / 16

  13. Results Λ b → J / ΨΛ 0 , simultaneous fit Events / ( 0.0064 ) 2 10 Events / ( 0.014 ) work in progress 700 600 2011 data work in progress 500 10 400 300 200 1 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 PDL[cm] 100 5.45 5.5 5.55 5.6 5.65 5.7 5.75 5.8 ψ 2 Events / ( 0.0064 ) Invariant Mass B ^(J/ lambda [GeV/c ] lamb 0 Events / ( 0.014 ) 1600 work in progress 10 2 1400 1200 2012 data work in progress 1000 10 800 600 1 400 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 PDL[cm] 200 5.45 5.5 5.55 5.6 5.65 5.7 5.75 5.8 ψ 2 Invariant Mass B ^(J/ lambda [GeV/c ] lamb 0 Figure: lifetime Simultaneous fit Figure: mass Simultaneous fit 13 / 16

  14. Results B s → J / Ψ f 0 , simultaneous fit Events / ( 0.005 ) 3 10 Events / ( 0.01828 ) 600 work in progress 10 2 500 2011 data work in progress 400 10 300 200 1 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 PDL[cm] 100 5.15 5.2 5.25 5.3 5.35 5.4 5.45 5.5 5.55 Invariant Mass B 0 (J/ ψ f ) [GeV/c 2 ] Events / ( 0.0064 ) s 0 3 10 Events / ( 0.01828 ) 2000 work in progress 1800 10 2 1600 2012 data work in progress 1400 1200 10 1000 800 600 1 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 PDL[cm] 400 200 5.15 5.2 5.25 5.3 5.35 5.4 5.45 5.5 5.55 Invariant Mass B 0 (J/ ψ f ) [GeV/c 2 ] s 0 Figure: lifetime Simultaneous fit Figure: mass Simultaneous fit 14 / 16

  15. Summary Decay channel CMS ( µ m ) LHCb ( µ m ) PDG ( µ m ) B s → J / Ψ f 0 501 . 0 ± 11 . 0 510 . 0 ± 12 . 0 509 . 0 ± 12 . 0 Λ b → J / ΨΛ 0 446 . 4 ± 6 . 9 424 . 2 ± 8 . 1 434 . 9 ± 3 . 8 Ξ b → J /ψ Ξ − 457 . 0 ± 44 . 0 464 . 5 ± 30 . 0 467 . 6 ± 81 . 0 B + u → J / Ψ K + 491 . 1 ± 0 . 8 490 . 8 ± 1 . 2 491 . 1 ± 1 . 2 B d → J / Ψ K ∗ 452 . 6 ± 1 . 8 456 . 9 ± 1 . 8 455 . 4 ± 1 . 5 B d → J / Ψ K 0 452 . 8 ± 2 . 7 449 . 4 ± 3 . 9 455 . 4 ± 1 . 5 s Decay Particle Antiparticle Ratio LHCb channel ( µ m ) ( µ m ) ( µ m ) ( µ m ) Λ b → J / ΨΛ 0 452 . 8 ± 9 . 7 439 . 6 ± 9 . 8 1 . 030 ± 0 . 032 0 . 940 ± 0 . 035 B + u → J / Ψ K + 491 . 1 ± 1 . 2 491 . 0 ± 1 . 2 1 . 001 ± 0 . 006 1 . 002 ± 0 . 004 B d → J / Ψ K ∗ 449 . 7 ± 2 . 6 455 . 8 ± 2 . 6 0 . 987 ± 0 . 008 1 . 000 ± 0 . 008 Work in progress 15 / 16

  16. !GRACIAS! 16 / 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend